当前位置: X-MOL 学术Mater. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controllable hierarchical micro/nano patterns on biomaterial surfaces fabricated by ultrasonic nanocrystalline surface modification
Materials & Design ( IF 7.6 ) Pub Date : 2018-01-01 , DOI: 10.1016/j.matdes.2017.10.041
Yuan Liang , Haifeng Qin , Nitin Mehra , Jiahua Zhu , Zhengnan Yang , Gary L. Doll , Chang Ye , Yalin Dong

Abstract In this work, we have shown that Ultrasonic Nanocrystal Surface Modification (UNSM) cannot only improve the mechanical properties of Ti-based biomaterials but also produce surface texture with hierarchical micro/nanoscale patterns due to its high controllability. After UNSM-treatment the surface texture of Ti-based biomaterial consists of a major microscale structure with widths ranging from 4 μm to 200 μm, and an embedded nanoscale structure with widths as small as 120 nm. With a customized cylinder tip, the average surface roughness (Ra) can be reduced to 0.03 μm, comparable to the superfinishing surface. The embedded nanoscale structure originates from the formation of the pile-up, which is determined by the elastic-plastic property of materials. Such hierarchical patterns enable new functions for the treated surface. It is demonstrated that light dispersion and the alteration of wettability can be achieved by controlling surface patterns using UNSM. The capacity of improving mechanical properties, biocompatibility, and hydrophobicity simultaneously, in conjunction with its low-cost and easy-to-operate features, makes it a promising surface engineering technique for biomaterial treatment.

中文翻译:

超声纳米晶表面改性制备的生物材料表面可控分层微/纳米图案

摘要 在这项工作中,我们表明超声波纳米晶体表面改性 (UNSM) 不仅可以提高钛基生物材料的机械性能,而且由于其高度可控性,还可以产生具有分级微/纳米级图案的表面纹理。UNSM 处理后,钛基生物材料的表面纹理由宽度范围为 4 μm 至 200 μm 的主要微米级结构和宽度小至 120 nm 的嵌入纳米级结构组成。使用定制的气缸尖端,平均表面粗糙度 (Ra) 可降低至 0.03 μm,与超精加工表面相当。嵌入的纳米级结构源于堆积的形成,这是由材料的弹塑性决定的。这种分层图案为处理过的表面提供了新的功能。证明可以通过使用 UNSM 控制表面图案来实现光散射和润湿性的改变。同时提高机械性能、生物相容性和疏水性的能力,加上其低成本和易于操作的特点,使其成为一种很有前途的生物材料处理表面工程技术。
更新日期:2018-01-01
down
wechat
bug