当前位置: X-MOL 学术Nat. Struct. Mol. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A structural model for microtubule minus-end recognition and protection by CAMSAP proteins.
Nature Structural & Molecular Biology ( IF 16.8 ) Pub Date : 2017-10-09 , DOI: 10.1038/nsmb.3483
Joseph Atherton 1 , Kai Jiang 2 , Marcel M Stangier 3 , Yanzhang Luo 4 , Shasha Hua 2 , Klaartje Houben 4 , Jolien J E van Hooff 5, 6, 7 , Agnel-Praveen Joseph 1 , Guido Scarabelli 8 , Barry J Grant 9 , Anthony J Roberts 1 , Maya Topf 1 , Michel O Steinmetz 3, 10 , Marc Baldus 4 , Carolyn A Moores 1 , Anna Akhmanova 2
Affiliation  

CAMSAP and Patronin family members regulate microtubule minus-end stability and localization and thus organize noncentrosomal microtubule networks, which are essential for cell division, polarization and differentiation. Here, we found that the CAMSAP C-terminal CKK domain is widely present among eukaryotes and autonomously recognizes microtubule minus ends. Through a combination of structural approaches, we uncovered how mammalian CKK binds between two tubulin dimers at the interprotofilament interface on the outer microtubule surface. In vitro reconstitution assays combined with high-resolution fluorescence microscopy and cryo-electron tomography suggested that CKK preferentially associates with the transition zone between curved protofilaments and the regular microtubule lattice. We propose that minus-end-specific features of the interprotofilament interface at this site serve as the basis for CKK's minus-end preference. The steric clash between microtubule-bound CKK and kinesin motors explains how CKK protects microtubule minus ends against kinesin-13-induced depolymerization and thus controls the stability of free microtubule minus ends.

中文翻译:

CAMSAP蛋白对微管负端识别和保护的结构模型。

CAMSAP 和 Patronin 家族成员调节微管负端稳定性和定位,从而组织非中心体微管网络,这对于细胞分裂、极化和分化至关重要。在这里,我们发现 CAMSAP C 末端 CKK 结构域广泛存在于真核生物中,并自主识别微管负端。通过结合结构方法,我们揭示了哺乳动物 CKK 如何在外微管表面的原丝间界面处的两个微管蛋白二聚体之间结合。体外重组分析结合高分辨率荧光显微镜和冷冻电子断层扫描表明,CKK 优先与弯曲原丝和规则微管晶格之间的过渡区相关联。我们建议该站点原丝间界面的负端特定特征作为 CKK 负端偏好的基础。微管结合的 CKK 和驱动蛋白马达之间的空间冲突解释了 CKK 如何保护微管负端免受驱动蛋白 13 诱导的解聚,从而控制游离微管负端的稳定性。
更新日期:2017-10-11
down
wechat
bug