当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crucial Role of the Electron Transport Layer and UV Light on the Open-Circuit Voltage Loss in Inverted Organic Solar Cells
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2017-09-25 00:00:00 , DOI: 10.1021/acsami.7b09059
Aurélien Tournebize 1 , Giorgio Mattana 1 , Thérèse Gorisse 1 , Antoine Bousquet 2 , Guillaume Wantz 1 , Lionel Hirsch 1 , Sylvain Chambon 1
Affiliation  

Understanding the degradation mechanisms in organic photovoltaics is crucial in order to develop stable organic semiconductors and robust device architectures. The rapid loss of efficiency, referred to as burn-in, is a major issue to be addressed. This study reports on the influence of the electron transport layer (ETLs) and UV light on the drop of open-circuit voltage (Voc) for P3HT:PC60BM-based devices. The results show that Voc loss is induced by the UV and, more importantly, that the ETL can amplify it, with TiOx yielding a stronger drop than ZnO. Using impedance spectroscopy (IS) and X-ray photoelectron spectroscopy (XPS), different degradation mechanisms were identified according to whether the ETL is TiOx or ZnO. For TiOx-based devices, the formation of an interface dipole was identified, resulting in a loss of the flat-band potential (Vfb) and, thus, of the Voc. For ZnO-based devices, chemical modifications of the metal oxide and active layer at the interface were detected, resulting in a doping of the active layer which impacts the Voc. This study highlights the role of the architecture and, more specifically, of the ETL in the severity of burn-in and degradation pathways.

中文翻译:

电子传输层和紫外光在反向有机太阳能电池的开路电压损失中的关键作用

为了开发稳定的有机半导体和坚固的器件架构,了解有机光伏电池的降解机理至关重要。效率的快速损失(称为老化)是需要解决的主要问题。这项研究报告了基于P3HT:PC 60 BM的器件的电子传输层(ETL)和紫外线对开路电压降(V oc)的影响。结果表明,V oc损失是由紫外线引起的,更重要的是,ETL可以用TiO x放大它。比ZnO产生更强的下降。使用阻抗光谱(IS)和X射线光电子能谱(XPS),根据ETL是TiO x还是ZnO鉴定出不同的降解机理。对于基于TiO x的器件,已经确定了界面偶极子的形成,从而导致了平带电势(V fb)以及V oc的损失。对于基于ZnO的器件,在界面处检测到金属氧化物和活性层的化学修饰,从而导致活性层的掺杂,从而影响V oc。这项研究强调了架构的作用,更具体地说,是ETL在老化和降解途径严重性方面的作用。
更新日期:2017-09-25
down
wechat
bug