当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stress Propagation through Biological Lipid Bilayers in Silico
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2017-09-25 00:00:00 , DOI: 10.1021/jacs.7b04724
Camilo Aponte-Santamaría 1, 2, 3 , Jan Brunken 4 , Frauke Gräter 1, 2
Affiliation  

Membrane tension plays various critical roles in the cell. We here asked how fast and how far localized pulses of mechanical stress dynamically propagate through biological lipid bilayers. In both coarse-grained and all-atom molecular dynamics simulations of a dipalmitoylphosphatidylcholine lipid bilayer, we observed nanometer-wide stress pulses, propagating very efficiently longitudinally at a velocity of approximately 1.4 ± 0.5 nm/ps (km/s), in close agreement with the expected speed of sound from experiments. Remarkably, the predicted characteristic attenuation time of the pulses was in the order of tens of picoseconds, implying longitudinal stress propagation over length scales up to several tens of nanometers before damping. Furthermore, the computed dispersion relation leading to such damping was consistent with proposed continuum viscoelastic models of propagation. We suggest this mode of stress propagation as a potential ultrafast mechanism of signaling that may quickly couple mechanosensitive elements in crowded biological membranes.

中文翻译:

通过硅树脂中的生物脂质双层传播应力。

膜张力在细胞中起着各种关键作用。我们在这里询问机械应力的局部脉冲通过生物脂质双层动态传播的速度和距离。在二棕榈酰磷脂酰胆碱脂双层的粗粒和全原子分子动力学模拟中,我们观察到纳米级应力脉冲,以大约1.4±0.5 nm / ps(km / s)的速度非常有效地纵向传播实验中预期的声音速度。值得注意的是,脉冲的预计特征衰减时间约为数十皮秒,这意味着在阻尼之前,纵向应力在长达几十纳米的长度范围内传播。此外,计算得出的导致这种阻尼的色散关系与所提出的连续介质粘弹性传播模型是一致的。我们建议这种模式的应力传播作为信号的潜在超快机制,可能会在拥挤的生物膜中快速耦合机械敏感元件。
更新日期:2017-09-25
down
wechat
bug