当前位置: X-MOL 学术Chem. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-component hybrid hydrogels – understanding the extent of orthogonal assembly and its impact on controlled release
Chemical Science ( IF 8.4 ) Pub Date : 2017-08-24 00:00:00 , DOI: 10.1039/c7sc03301j
Vânia M. P. Vieira 1, 2, 3, 4 , Laura L. Hay 1, 2, 3, 4 , David K. Smith 1, 2, 3, 4
Affiliation  

This paper reports self-assembled multi-component hybrid hydrogels including a range of nanoscale systems and characterizes the extent to which each component maintains its own unique functionality, demonstrating that multi-functionality can be achieved by simply mixing carefully-chosen constituents. Specifically, the individual components are: (i) pH-activated low-molecular-weight gelator (LMWG) 1,3;2,4-dibenzylidenesorbitol-4′,4′′-dicarboxylic acid (DBS–COOH), (ii) thermally-activated polymer gelator (PG) agarose, (iii) anionic biopolymer heparin, and (iv) cationic self-assembled multivalent (SAMul) micelles capable of binding heparin. The LMWG still self-assembles in the presence of PG agarose, is slightly modified on the nanoscale by heparin, but is totally disrupted by the micelles. However, if the SAMul micelles are bound to heparin, DBS–COOH self-assembly is largely unaffected. The LMWG endows hybrid materials with pH-responsive behavior, while the PG provides mechanical robustness. The rate of heparin release can be controlled through network density and composition, with the LMWG and PG behaving differently in this regard, while the presence of the heparin binder completely inhibits heparin release through complexation. This study demonstrates that a multi-component approach can yield exquisite control over self-assembled materials. We reason that controlling orthogonality in such systems will underpin further development of controlled release systems with biomedical applications.

中文翻译:

多组分杂化水凝胶–了解正交组装的程度及其对控释的影响

本文报道了包括一系列纳米系统的自组装多组分混合水凝胶,并描述了每种组分保持其自身独特功能的程度,证明了通过简单地混合精心选择的成分就可以实现多功能。具体而言,各个成分为:(i)pH活化的低分子量胶凝剂(LMWG)1,3; 2,4-二亚苄基山梨醇-4',4''-二羧酸(DBS–COOH),(ii)热活化聚合物胶凝剂(PG)琼脂糖,(iii)阴离子生物聚合物肝素和(iv)能够结合肝素的阳离子自组装多价(SAMul)胶束。LMWG仍在PG琼脂糖存在下自组装,被肝素在纳米级稍加修饰,但被胶束完全破坏。但是,如果SAMul胶束与肝素结合,DBS–COOH自组装在很大程度上不受影响。LMWG使混合材料具有pH响应性能,而PG提供了机械强度。肝素的释放速率可以通过网络密度和组成来控制,而LMWG和PG在这方面的行为有所不同,而肝素结合剂的存在则完全抑制了肝素通过络合释放。这项研究表明,多组分方法可以对自组装材料进行精确控制。我们认为,在此类系统中控制正交性将为生物医学应用中控释系统的进一步发展奠定基础。肝素的释放速率可以通过网络密度和组成来控制,而LMWG和PG在这方面的行为有所不同,而肝素结合剂的存在则完全抑制了肝素通过络合释放。这项研究表明,多组分方法可以对自组装材料进行精确控制。我们认为在此类系统中控制正交性将为生物医学应用中控释系统的进一步发展奠定基础。肝素的释放速率可以通过网络密度和组成来控制,而LMWG和PG在这方面的行为有所不同,而肝素结合剂的存在则完全抑制了肝素通过络合释放。这项研究表明,多组分方法可以对自组装材料进行精确控制。我们认为,在此类系统中控制正交性将为生物医学应用中控释系统的进一步发展奠定基础。
更新日期:2017-09-25
down
wechat
bug