当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In situ TEM observation of the electrochemical lithiation of N-doped anatase TiO2 nanotubes as anodes for lithium-ion batteries
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2017-09-22 00:00:00 , DOI: 10.1039/c7ta05877b
Minghao Zhang 1, 2, 3, 4, 5 , Kuibo Yin 1, 2, 3, 4, 6 , Zachary D. Hood 1, 2, 3, 4, 7 , Zhonghe Bi 2, 3, 4, 8 , Craig A. Bridges 2, 3, 4, 8 , Sheng Dai 2, 3, 4, 8 , Ying Shirley Meng 4, 5, 9, 10 , Mariappan Parans Paranthaman 2, 3, 4, 8 , Miaofang Chi 1, 2, 3, 4
Affiliation  

Due to their high specific capacity and negligible volume expansion during cycling, anatase titanium dioxide (a-TiO2) nanotubes have been considered as a prime candidate for anodes in lithium-ion batteries. However, their rate capability for electrochemical cycling is limited by the low electronic conductivity of a-TiO2 nanotubes. Here, we show that a desirable amount of nitrogen doping can significantly enhance the electronic conductivity in a-TiO2 nanotubes, resulting in improvements in both the capacity stability and the rate capability at fast charge–discharge rates. Electron energy loss spectroscopy revealed a high doping concentration of nitrogen (∼5%) by substituting for oxygen ions in a-TiO2 nanotubes. The lithiation mechanism of N-doped a-TiO2 nanotubes was further investigated using in situ transmission electron microscopy, where a three-step lithiation mechanism was revealed. Lithium ions initially intercalate into the a-TiO2 lattice structure. Further insertion of lithium ions triggers a phase transformation from a-TiO2 to orthorhombic Li0.5TiO2 and finally to polycrystalline tetragonal LiTiO2. Our results reveal that nitrogen doping significantly facilitates lithiation in TiO2 through enhanced electronic conductivity, while the structural and chemical evolutions during the lithiation process remain similar to those of undoped TiO2.

中文翻译:

N掺杂锐钛矿型TiO 2纳米管作为锂离子电池阳极的电化学锂化的原位TEM观察

由于它们的高比容量和在循环过程中可忽略的体积膨胀,锐钛矿型二氧化钛(a-TiO 2)纳米管被认为是锂离子电池阳极的主要候选材料。然而,对于在电化学循环的速率能力由一个-TiO 2的低的电子传导性限制2纳米管。在这里,我们表明,理想的氮掺杂量可以显着提高a-TiO 2纳米管中的电子电导率,从而改善容量稳定性和快速充放电速率下的速率能力。电子能量损失谱显示通过取代a-TiO 2中的氧离子,氮的掺杂浓度高(约5%)。纳米管。利用原位透射电子显微镜进一步研究了N掺杂的a-TiO 2纳米管的锂化机理,揭示了三步锂化机理。锂离子最初嵌入a-TiO 2晶格结构中。锂离子的进一步插入触发了从a-TiO 2到正交晶体Li 0.5 TiO 2并最终到多晶四方LiTiO 2的相变。我们的结果表明,氮掺杂显着促进了TiO 2中的锂化通过提高电子电导率,而在锂化过程中的结构和化学演变仍与未掺杂的TiO 2相似。
更新日期:2017-09-22
down
wechat
bug