当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kinetic Analysis of Copper(I)/Feringa-Phosphoramidite Catalyzed AlEt3 1,4-Addition to Cyclohex-2-en-1-one
ACS Catalysis ( IF 12.9 ) Pub Date : 2017-09-21 00:00:00 , DOI: 10.1021/acscatal.7b02198
Darren Willcox 1 , Ryan Nouch 1 , Alexander Kingsbury 1 , David Robinson 2 , Joe V. Carey 3 , Steve Brough 3 , Simon Woodward 1
Affiliation  

ReactIR studies of mixtures of AlEt3 (A) and cyclohex-2-en-1-one (CX) in Et2O indicate immediate formation of the Lewis acid–base complex CX·A at −40 °C (K = 12.0 M–1, ΔG°react = −1.1 kcal mol–1). Copper(I) catalysts, derived from precatalytic Cu(OAc)2 (up to 5 mol %) and (R,S,S)-P(binaphtholate){N(CHMePh)2} (Feringa’s ligand (L), up to 5 mol %) convert CX·A (0.04–0.3 M) into its 1,4-addition product enolate (E) within 2000 s at −40 °C. Kinetic studies (ReactIR and chiral GC) of CX·A, CX, and (R)-3-ethylcyclohexanone (P, the H+ quenching product of enolate E) show that the true catalyst is formed in the first 300 s and this subsequently provides P in 82% ee. This true catalyst converts CX·A to E with the rate law [Cu]1.5[L]0.66[CX·A]1 when [L]/[Cu] ≤ 3.5. Above this ligand ratio inhibition by added ligand with order [L]−2.5 is observed. A rate-determining step (rds) of Cu3L2(CX·A)2 stoichiometry is shown to be most consistent with the rate law. The presence of the enolate in the active catalyst best accounts for the reaction’s induction period and molecularity as [E] ≡ [CX·A]. Catalysis proceeds through a “shuttling mechanism” between two C2 symmetry related ground state intermediates. Each turnover consumes 1 equiv of CX·A, expels one molecule of E, and forms the new Cu–Et bond needed for the next cycle. The observed ligand (L) inhibition and a nonlinear ligand L ee effect on the ee of P are well simulated by the kinetic model. DFT studies (ωB97X-D/SRSC) support coordination of CX·A to the groundstate Cu trimer and its rapid conversion to E.

中文翻译:

铜(I)/ Feringa-亚磷酰胺催化Cyclohex-2-en-1-one AlEt 3 1,4-加成反应的动力学分析

在Et 2 O中对AlEt 3A)和环己-2-烯-1-一(CX)混合物的ReactIR研究表明,路易斯酸碱复合物CX·A在−40°C时立即形成(K = 12.0 M –1ΔG °反应= −1.1 kcal摩尔–1)。衍生自预催化Cu(OAc)2(最高5 mol%)和(R,S,S)-P(邻萘二甲酸酯){N(CHMePh)2 }(Feringa's配体(L)的铜(I)催化剂5 mol%)将CX·A(0.04-0.3 M)转化为其1,4-加成产物烯醇盐(E)在-40°C下2000 s之内。对CX·ACX和(R)-3-乙基环己酮(P,烯酸酯E的H +猝灭产物)的动力学研究(反应动力学和手性GC)表明,真正的催化剂在最初的300 s内形成,随后逐渐形成。提供82%ee中的P。当[ L ] / [Cu]≤3.5时,该真催化剂以速率定律[Cu] 1.5 [ L ] 0.66 [ CX·A ] 1转化CX·AE。高于此配体比率,添加的[ L ]配体抑制观察到-2.5。Cu 3 L 2CX·A2化学计量比的速率确定步骤(rds)被证明与速率定律最一致。活性催化剂中烯醇化物的存在最能说明反应的诱导期和分子式为[ E ]≡[ CX·A ]。催化通过两个与C 2对称相关的基态中间体之间的“穿梭机制”进行。每次转换消耗1当量的CX·A,排出一个分子的E,并形成下一循环所需的新的Cu-Et键。观察到的配体(L)抑制和非线性配体大号上的EE EE效果P深受动力学模型模拟。DFT研究(ωB97X-D/ SRSC)支持CX·A与基态Cu三聚体的协调以及其向E的快速转化。
更新日期:2017-09-21
down
wechat
bug