当前位置: X-MOL 学术Appl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nano-enhanced Phase Change Material for thermal management of BICPV
Applied Energy ( IF 10.1 ) Pub Date : 2017-09-21 , DOI: 10.1016/j.apenergy.2017.09.076
S. Sharma , L. Micheli , W. Chang , A.A. Tahir , K.S. Reddy , T.K. Mallick

Building-Integrated Concentrated Photovoltaics (BICPV) is based on Photovoltaic (PV) technology which experience a loss in their electrical efficiency with an increase in temperature that may also lead to their permanent degradation over time. With a global PV installed capacity of 303 GW, a nominal 10 °C decrease in their average temperature could theoretically lead to 15 GW increase in electricity production worldwide. Currently, there is a gap in the research knowledge concerning the effectiveness of the available passive thermal regulation techniques for BICPV, both individually and working in tandem. This paper presents a novel combined passive cooling solution for BICPV incorporating micro-fins, Phase Change Material (PCM) and Nanomaterial Enhanced PCM (n-PCM). This work was undertaken with the aim to assess the unreported to date benefits of introducing these solutions into BICPV systems and to quantify their individual as well as combined effectiveness. The thermal performance of an un-finned metallic plate was first compared to a micro-finned plate under naturally convective conditions and then compared with applied PCM and n-PCM. A designed and fabricated, scaled-down thermal system was attached to the electrical heaters to mimic the temperature profile of the BICPV. The results showed that the average temperature in the centre of the system was reduced by 10.7 °C using micro-fins with PCM and 12.5 °C using micro-fins with n-PCM as compared to using the micro-fins only. Similarly, the effect of using PCM and n-PCM with the un-finned surface demonstrated a temperature reduction of 9.6 °C and 11.2 °C respectively as compared to the case of natural convection. Further, the innovative 3-D printed PCM containment, with no joined or screwed parts, showed significant improvements in leakage control. The important thermophysical properties of the PCM and the n-PCM were analysed and compared using a Differential Scanning Calorimeter. This research can contribute to bridging the existing gaps in research and development of thermal regulation of BICPV and it is envisaged that the realised incremental improvement can be a potential solution to (a) their performance improvement and (b) longer life, thereby contributing to the environmental benefits.



中文翻译:

用于BICPV热管理的纳米增强相变材料

建筑物集成式聚光光伏(BICPV)基于光伏(PV)技术,随着温度的升高,其电效率会下降,这也可能导致其随着时间的推移永久退化。全球光伏装机容量为303 GW,理论上平均温度降低10°C可能在理论上导致全球发电量增加15 GW。当前,关于BICPV可用的被动式热调节技术的有效性的研究知识还存在空白,无论是单独使用还是协同工作。本文提出了一种针对BICPV的新型组合式被动冷却解决方案,该解决方案结合了微翅片,相变材料(PCM)和纳米材料增强型PCM(n-PCM)。进行这项工作的目的是评估将这些解决方案引入BICPV系统的迄今未报告的收益,并量化其个体以及综合效力。首先将未翅片金属板的热性能与自然对流条件下的微翅片板进行比较,然后再与应用的PCM和n-PCM进行比较。将设计和制造的按比例缩小的热系统连接到电加热器,以模拟BICPV的温度曲线。结果表明,与仅使用微翅片相比,使用PCM的微翅片可降低系统中心的平均温度,而使用n-PCM的微翅片可降低12.5°C。类似地,在未翅片表面上使用PCM和n-PCM的效果表明温度降低了9.6°C和11。与自然对流相比分别为2°C。此外,创新的3D打印PCM密封圈,没有连接或拧紧的零件,显示出泄漏控制方面的显着改进。使用差示扫描量热仪分析并比较了PCM和n-PCM的重要热物理性质。这项研究可有助于弥合BICPV热调节研究和开发中的现有差距,并且可以设想,实现的增量改进可作为(a)性能改善和(b)更长寿命的潜在解决方案,从而有助于环境效益。使用差示扫描量热仪分析并比较了PCM和n-PCM的重要热物理性质。这项研究可有助于弥合BICPV热调节研究和开发中的现有差距,并且可以设想,实现的增量改进可作为(a)其性能改进和(b)更长寿命的潜在解决方案,从而有助于环境效益。使用差示扫描量热仪分析并比较了PCM和n-PCM的重要热物理性质。这项研究可有助于弥合BICPV热调节研究和开发中的现有差距,并且可以设想,实现的增量改进可作为(a)性能改善和(b)更长寿命的潜在解决方案,从而有助于环境效益。

更新日期:2017-09-21
down
wechat
bug