当前位置: X-MOL 学术Dalton Trans. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mg doped Li2FeSiO4/C nanocomposites synthesized by the solvothermal method for lithium ion batteries
Dalton Transactions ( IF 3.5 ) Pub Date : 2017-09-04 00:00:00 , DOI: 10.1039/c7dt03177g
Ajay Kumar 1, 2, 3, 4 , O. D. Jayakumar 5, 6, 7 , Jagannath Jagannath 5, 6, 7 , Parisa Bashiri 1, 2, 3, 4 , G. A. Nazri 1, 2, 3, 4 , Vaman. M. Naik 4, 8, 9, 10 , Ratna Naik 1, 2, 3, 4
Affiliation  

A series of porous Li2Fe1−xMgxSiO4/C (x = 0, 0.01, 0.02, 0.04) nanocomposites (LFS/C, 1Mg-LFS/C, 2Mg-LFS and 4Mg-LFS/C) have been synthesized via a solvo-thermal method using the Pluronic P123 polymer as an in situ carbon source. Rietveld refinement of the X-ray diffraction data of Li2Fe1−xMgxSiO4/C composites confirms the formation of the monoclinic P21 structure of Li2FeSiO4. The addition of Mg facilitates the growth of impurity-free Li2FeSiO4 with increased crystallinity and particle size. Despite having the same percentage of carbon content (∼15 wt%) in all the samples, the 1Mg-LFS/C nanocomposite delivered the highest initial discharge capacity of 278 mA h g−1 (∼84% of the theoretical capacity) at the C/30 rate and also exhibited the best rate capability and cycle stability (94% retention after 100 charge–discharge cycles at 1C). This is attributed to its large surface area with a narrow pore size distribution and a lower charge transfer resistance with enhanced Li-ion diffusion coefficient compared to other nanocomposites.

中文翻译:

溶剂热法合成锂离子电池镁掺杂Li 2 FeSiO 4 / C纳米复合材料

一系列多孔的Li 2 Fe 1- x Mg x SiO 4 / C(x = 0、0.01、0.02、0.04)纳米复合材料(LFS / C,1Mg-LFS / C,2Mg-LFS和4Mg-LFS / C)具有使用Pluronic P123聚合物作为原位碳源,通过溶剂热法合成了碳纳米管。Li 2 Fe 1− x Mg x SiO 4 / C复合材料的X射线衍射数据的Rietveld精炼证实了Li 2 FeSiO 4的单斜晶P 2 1结构的形成。Mg的添加促进了具有增加的结晶度和粒径的无杂质的Li 2 FeSiO 4的生长。尽管所有样品中的碳含量百分比相同(约15 wt%),但1Mg-LFS / C纳米复合材料在C温度下仍具有278 mA hg -1的最高初始放电容量(约为理论容量的84%)。 / 30倍率,还表现出最佳的倍率能力和循环稳定性(在1C下100次充放电循环后保留率达94%)。与其他纳米复合材料相比,这归因于其较大的表面积和较窄的孔径分布,以及较低的电荷转移阻力和增强的锂离子扩散系数。
更新日期:2017-09-20
down
wechat
bug