当前位置: X-MOL 学术Appl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical modeling study of a man-made low-permeability barrier for the compressed air energy storage in high-permeability aquifers
Applied Energy ( IF 11.2 ) Pub Date : 2017-09-18 , DOI: 10.1016/j.apenergy.2017.09.065
Yi Li , Lehua Pan , Keni Zhang , Litang Hu , Jinsheng Wang , Chaobin Guo

Compressed air energy storage (CAES) is a grid-scale energy storage technology for intermittent energy, as proven by the decades-long successful operation of two existing compressed air energy storage in cavern (CAESC) power plants. Because of the limited availability of salt domes appropriate for CAESC, the more widely available aquifers (compressed air energy storage in aquifers, CAESA) have recently attracted considerable attention as candidates for CAES. An ideal aquifer for CAESA is highly permeable around the well to facilitate easy injection and withdrawal of air, but the high-permeability region is surrounded by low-permeability zones to minimize the loss of injected air and decrease in energy efficiency. However, such ideal geological structures are not always available in nature. Therefore, the potential of creating man-made low-permeability barrier in high-permeability aquifers is very interesting. In this paper, we investigate the feasibility of man-made low-permeability barriers in high-permeability aquifers using the numerical simulator TOUGH2/Gel to calculate the three-component flow (including a miscible gelling liquid). The simulation results show that an expected low-permeability barrier can be created by injecting grout with certain properties, and the altered aquifer performs well for CAESA. Additional sensitivity studies are also performed to reveal the effects of the various factors on the success of the low-permeability barrier creation, including the critical solidification concentration, the scale factor of the time dependence of the grout viscosity, the relative density of the grout, and the volume of the follow-up water injection. The results indicate that, in a horizontal aquifer, low critical solidification concentrations, and small scale factors are generally preferred and the density of grout should be close to that of the in situ water. For the given volume of the injected grout, there is an optimal follow-up water injection that will create the largest storage space without damaging the barrier. These results may help to extend the candidate sites for CAESA and the prospect of large scale energy storage.



中文翻译:

人造低渗透阻隔层在高渗透含水层中压缩空气储能的数值模拟研究

压缩空气储能(CAES)是一种用于间歇性能源的网格规模储能技术,已被洞穴式发电厂(CAESC)中的两个现有压缩空气储能成功运行数十年,证明了这一点。由于适用于CAESC的盐丘的供应有限,因此,使用更广泛的含水层(含水层中的压缩空气能量存储,CAESA)作为CAES的候选对象最近引起了相当大的关注。CAESA的理想含水层在井周围具有高渗透性,从而易于注入和抽出空气,但是高渗透率区域被低渗透率区域包围,以最大程度地减少注入空气的损失并降低能源效率。但是,这种理想的地质结构在自然界中并不总是可用的。所以,在高渗透性含水层中形成人为的低渗透性屏障的潜力非常有趣。在本文中,我们使用数值模拟器TOUGH2 / Gel来计算三组分流量(包括可混溶的胶凝液),以研究高渗透性含水层中的人造低渗透性屏障的可行性。仿真结果表明,通过注入具有一定性能的水泥浆可以创建预期的低渗透屏障,并且改变后的含水层对CAESA的效果很好。还进行了其他敏感性研究,以揭示各种因素对低渗透性屏障形成成功的影响,包括临界凝固浓度,水泥浆粘度随时间变化的比例因子,水泥浆的相对密度,以及后续注水量。结果表明,在水平含水层中,通常优选低临界凝固浓度和小比例因子,并且灌浆密度应接近原位水的密度。对于给定的注浆量,可以进行最佳的后续注水,这将在不损坏屏障的情况下创造出最大的存储空间。这些结果可能有助于扩展CAESA的候选地点和大规模储能的前景。有一个最佳的后续注水方式,可以在不损坏屏障的情况下创建最大的存储空间。这些结果可能有助于扩展CAESA的候选地点和大规模储能的前景。有一个最佳的后续注水方式,可以在不损坏屏障的情况下创建最大的存储空间。这些结果可能有助于扩展CAESA的候选地点和大规模储能的前景。

更新日期:2017-09-18
down
wechat
bug