当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Template-Free Synthesis of Highly Porous Boron Nitride: Insights into Pore Network Design and Impact on Gas Sorption
ACS Nano ( IF 15.8 ) Pub Date : 2017-09-18 00:00:00 , DOI: 10.1021/acsnano.7b04219
Sofia Marchesini 1 , Catriona M. McGilvery 2 , Josh Bailey 3 , Camille Petit 1
Affiliation  

Production of biocompatible and stable porous materials, e.g., boron nitride, exhibiting tunable and enhanced porosity is a prerequisite if they are to be employed to address challenges such as drug delivery, molecular separations, or catalysis. However, there is currently very limited understanding of the formation mechanisms of porous boron nitride and the parameters controlling its porosity, which ultimately prevents exploiting the material’s full potential. Herein, we produce boron nitride with high and tunable surface area and micro/mesoporosity via a facile template-free method using multiple readily available N-containing precursors with different thermal decomposition patterns. The gases are gradually released, creating hierarchical pores, high surface areas (>1900 m2/g), and micropore volumes. We use 3D tomography techniques to reconstruct the pore structure, allowing direct visualization of the mesopore network. Additional imaging and analytical tools are employed to characterize the materials from the micro- down to the nanoscale. The CO2 uptake of the materials rivals or surpasses those of commercial benchmarks or other boron nitride materials reported to date (up to 4 times higher), even after pelletizing. Overall, the approach provides a scalable route to porous boron nitride production as well as fundamental insights into the material’s formation, which can be used to design a variety of boron nitride structures.

中文翻译:

高多孔氮化硼的无模板合成:孔网络设计及其对气体吸附的影响

生产生物相容性和稳定的多孔材料,例如。,氮化硼,表现出可调谐和增强的孔隙率是一个先决条件,如果它们要被用于地址的挑战,如药物递送,分子分离,或催化。但是,目前对多孔氮化硼的形成机理和控制其孔隙率的参数的了解非常有限,这最终阻止了利用该材料的全部潜能。在此,我们产生氮化硼具有高和可调谐表面积和微/中孔通过一种简便的无模板方法,该方法使用了多种易于获得的具有不同热分解模式的含氮前体。气体逐渐释放,形成分层的孔,高表面积(> 1900 m 2 / g)和微孔体积。我们使用3D层析成像技术来重建孔结构,从而可以直接可视化中孔网络。还使用了其他的成像和分析工具来表征从微米级到纳米级的材料。一氧化碳2即使在造粒后,材料的吸收率也可以达到甚至超过商业基准或迄今报道的其他氮化硼材料(高达4倍)。总体而言,该方法为多孔氮化硼的生产提供了可扩展的途径,以及对材料形成的基本见解,可用于设计各种氮化硼结构。
更新日期:2017-09-19
down
wechat
bug