当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-situ synthesis of co-continuous aluminum-aluminum nitride composites by arc plasma induced accelerated displacement reaction
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2017-12-01 , DOI: 10.1016/j.jallcom.2017.09.159
J.I. Lee , E.S. Park

Abstract We investigate in-situ formation of co-continuous aluminum (Al)-aluminum nitride (AlN) composites with attractive mechanical and thermal properties by newly developed arc plasma-induced accelerated displacement reaction (APADR). The core innovation of the process is that it combines a simple pressureless infiltration with a thermodynamically favorable displacement reaction of silicon nitride (Si 3 N 4 ) and molten Al under arc-plasma induced ultra-high temperature. The fast volume displacement nitridation via APADR resulted from improved wettability and enhanced diffusion of dissolved nitrogen. Thus, within a minute of APADR, Al matrix composites (AMCs) containing AlN over 50 vol% were successfully fabricated by the infiltration of Al melt into Si 3 N 4 particulate preforms with different particle size distributions. The microstructures of the composites exhibited co-continuous three-dimensional network structures with strong interfacial bonding and high interfacial thermal conductance, which resulted in a unique combination of relatively high flexural strength and high thermal conductivity. In particular, the AMCs containing nitrides of 73 vol% exhibited a low coefficient of thermal expansion, close to that of GaAs or GaN used for high-power semiconductor devices, which is the lowest value ever reported among the nitride reinforced AMCs. These results would give us a promising strategy for in-situ processing routes to fabricate continuous nitride reinforced AMCs with high dimensional and mechanical stability for heat spreader applications.

中文翻译:

电弧等离子体诱导加速置换反应原位合成共连续氮化铝铝复合材料

摘要 我们研究了通过新开发的电弧等离子体诱导加速置换反应 (APADR) 原位形成具有有吸引力的机械和热性能的共连续铝 (Al)-氮化铝 (AlN) 复合材料。该工艺的核心创新在于它将简单的无压渗透与在电弧等离子体诱导的超高温下氮化硅(Si 3 N 4 )和熔融铝的热力学有利置换反应相结合。通过 APADR 进行的快速体积置换氮化是由于改善的润湿性和增强的溶解氮扩散。因此,在 APADR 的一分钟内,通过将 Al 熔体渗透到具有不同粒度分布的 Si 3 N 4 颗粒预制件中,成功地制造了含有超过 50 vol% 的 AlN 的 Al 基体复合材料 (AMC)。复合材料的微观结构表现出共连续的三维网络结构,具有强界面结合力和高界面热导率,从而形成了相对较高的弯曲强度和高导热率的独特组合。特别是,含有 73 vol% 氮化物的 AMC 表现出低热膨胀系数,接近用于高功率半导体器件的 GaAs 或 GaN,这是氮化物增强 AMC 中报道的最低值。这些结果将为我们提供一种有前景的原位加工路线策略,以制造用于散热器应用的具有高尺寸和机械稳定性的连续氮化物增强 AMC。
更新日期:2017-12-01
down
wechat
bug