当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The creep deformation and fracture behaviors of nickel-base superalloy M951G at 900 °C
Materials Science and Engineering: A ( IF 6.4 ) Pub Date : 2017-09-18 , DOI: 10.1016/j.msea.2017.09.066
Luqing Cui , Huhu Su , Jinjiang Yu , Jinlai Liu , Tao Jin , Xiaofeng Sun

The creep behaviors of M951G alloy were carried out under stress ranging from 240 MPa to 400 MPa at 900 °C, and the corresponding deformation mechanisms and fracture behaviors after rupture had been investigated by various techniques. Results showed that both the deformation mechanisms and fracture behaviors were dependent on the applied stress. According to the transmission electron microscope (TEM) observations, the dominant deformation mechanism changed from a combined process of slip and climb of dislocations in matrix channel to shearing of dislocations in γ′ precipitates and cross-slip of dislocations in matrix channel with the applied stress increasing. Fracture behaviors of M951G alloy were characterized using optical microscope (OM) and scanning electron microscope (SEM), which changed from intergranular to transgranular with the increase of applied stress. At low applied stress, M951G alloy was failure in the form of intergranular owing to coalescence of micropores along the grain boundaries. However, at higher applied stress the microcracks initiated at broken carbides in the grain interior, and finally resulted in transgranular fracture. Additionally, creep strain rate also played a key role in determining the transition of creep fracture modes by effect the corresponding temperature of equal strength for grain boundary and grain interior. The values of apparent stress exponent at low and high stress regions were calculated to be 5.14 and 11.13 respectively, which was due to the change of deformation mechanisms and fracture modes with the increase of applied stress.



中文翻译:

镍基高温合金M951G在900°C时的蠕变变形和断裂行为

M951G合金的蠕变行为是在900℃的240 MPa至400 MPa的应力下进行的,并通过各种技术研究了相应的变形机理和断裂后的断裂行为。结果表明,变形机制和断裂行为均取决于所施加的应力。根据透射电子显微镜(TEM)的观察,主要变形机制从基体通道中位错的滑移和爬升的组合过程转变为γ'析出物的位错的剪切和施加应力时基体通道中位错的交叉滑动。增加。用光学显微镜(OM)和扫描电子显微镜(SEM)表征了M951G合金的断裂行为,随着施加应力的增加,从晶间转变为跨晶。在较低的施加应力下,由于沿晶界的微孔聚结,M951G合金以晶间形式失效。但是,在较高的施加应力下,微裂纹在晶粒内部的碳化物破碎处开始,并最终导致晶界断裂。另外,蠕变应变率在确定蠕变断裂模式转变方面也起着关键作用,其影响是通过影响晶界和晶粒内部等强度的相应温度来实现的。计算得出低应力区和高应力区的表观应力指数分别为5.14和11.13,这是由于变形机制和断裂模式随施加应力的增加而变化的结果。由于沿晶界的微孔聚结,M951G合金以晶间形式失效。但是,在较高的施加应力下,微裂纹在晶粒内部的碳化物破碎处开始,并最终导致晶界断裂。另外,蠕变应变率在确定蠕变断裂模式转变方面也起着关键作用,其影响是通过影响晶界和晶粒内部等强度的相应温度来实现的。计算得出低应力区和高应力区的表观应力指数分别为5.14和11.13,这是由于变形机制和断裂模式随施加应力的增加而变化的结果。由于沿晶界的微孔聚结,M951G合金以晶间形式失效。但是,在较高的施加应力下,微裂纹在晶粒内部的碳化物破碎处开始,并最终导致晶界断裂。另外,蠕变应变率在确定蠕变断裂模式转变方面也起着关键作用,其影响是通过影响晶界和晶粒内部等强度的相应温度来实现的。计算得出低应力区和高应力区的表观应力指数分别为5.14和11.13,这是由于变形机制和断裂模式随施加应力的增加而变化的结果。在较高的施加应力下,微裂纹在晶粒内部的碳化物破碎处开始,并最终导致经晶断裂。另外,蠕变应变率在确定蠕变断裂模式转变方面也起着关键作用,其影响是通过影响晶界和晶粒内部等强度的相应温度来实现的。计算得出低应力区和高应力区的表观应力指数分别为5.14和11.13,这是由于变形机制和断裂模式随施加应力的增加而变化的结果。在较高的施加应力下,微裂纹在晶粒内部的碳化物破碎处开始,并最终导致经晶断裂。另外,蠕变应变率在确定蠕变断裂模式转变方面也起着关键作用,其影响是通过影响晶界和晶粒内部等强度的相应温度来实现的。计算得出低应力区和高应力区的表观应力指数分别为5.14和11.13,这是由于变形机制和断裂模式随施加应力的增加而变化的结果。蠕变应变率在确定蠕变断裂模式转变方面也起着关键作用,其作用是影响相应的相等温度的晶界和内部晶粒的温度。计算得出低应力区和高应力区的表观应力指数分别为5.14和11.13,这是由于变形机制和断裂模式随施加应力的增加而变化的结果。蠕变应变率在确定蠕变断裂模式转变方面也起着关键作用,其作用是影响相应的相等温度的晶界和内部晶粒的温度。计算得出低应力区和高应力区的表观应力指数分别为5.14和11.13,这是由于变形机制和断裂模式随施加应力的增加而变化的结果。

更新日期:2017-09-18
down
wechat
bug