当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite
Materials Science and Engineering: A ( IF 6.4 ) Pub Date : 2017-09-18 , DOI: 10.1016/j.msea.2017.09.059
Y. Zou , Y.B. Xu , Z.P. Hu , S.Q. Chen , D.T. Han , R.D.K. Misra , G.Z. Wang

Three different grain structures of low-carbon medium-manganese steel were prepared through appropriate controlled rolling process. The laminated microstructure with a strong <110>//rolling direction (RD) fiber texture was characterized by ultra-fine elongated ferrite, retained austenite and martensite phase arranged alternately along the RD. The steel with equiaxed grain structure exhibited a relatively low tensile strength of 960 MPa and an extremely poor low-temperature toughness of ~ 8 J at −196 °C. An enhanced upper shelf energy (> 450 J) and low-temperature toughness (~ 105 J at −196 °C), as well as an improved tensile strength (1145 MPa) was obtained in the steel with laminated microstructure. The laminated microstructure enabled the steel to be significantly stronger and tougher along the RD, which contributed to the high tensile strength to some extent. It is concluded that the combined effect of the ultra-fine elongated laminated microstructure, the possible interface decohesion and the existence of numerous {001} cleavage planes resulted in the occurrence of delamination. The delamination fracture enhanced the upper shelf energy mainly by promoting crack branching along the RD and thus suppressing crack propagation along the v-notch direction, which finally resulted in greater plastic deformation and significant increase in absorbed energy. Besides delamination toughening, transformation-induced plasticity (TRIP) effect of metastable retained austenite is believed to be responsible for the high cryogenic toughness, which can release stress concentration of crack tips and thus blunting cracks propagation.



中文翻译:

具有叠层组织和残余奥氏体的低碳中锰钢板的高强度韧性组合

通过适当的控制轧制过程,制备了三种不同的低碳中锰钢晶粒组织。具有强<110> //轧制方向(RD)纤维织构的层压微结构的特征在于,超细细长的铁素体,残留的奥氏体和马氏体相沿RD交替排列。具有等轴晶组织的钢在-196°C时表现出较低的960 MPa抗拉强度和极差的〜8 J的低温韧性。在具有叠层显微组织的钢中,获得了更高的上层储能(> 450 J)和低温韧性(在-196°C时为〜105 J),以及提高的拉伸强度(1145 MPa)。层压的微观结构使钢沿RD明显更坚固。在某种程度上有助于高拉伸强度。结论是,超细细长层压微结构,可能的界面脱粘和大量{001}劈裂面的存在共同导致了分层的发生。分层断裂主要通过促进沿RD的裂纹分支并因此抑制沿v形缺口方向的裂纹扩展来增强上层架架能量,最终导致更大的塑性变形和吸收能的显着增加。除了分层增韧外,亚稳态残留奥氏体的相变诱导塑性(TRIP)效应还被认为是高低温韧性的原因,它可以释放裂纹尖端的应力集中,从而减弱裂纹的扩展。结论是,超细细长层压微结构,可能的界面脱粘和大量{001}劈裂面的存在共同导致了分层的发生。分层断裂主要通过促进沿RD的裂纹分支并因此抑制沿v形缺口方向的裂纹扩展来增强上层架子能量,最终导致更大的塑性变形和吸收能量的显着增加。除了分层增韧外,亚稳态残留奥氏体的相变诱导塑性(TRIP)效应还被认为是高低温韧性的原因,它可以释放裂纹尖端的应力集中,从而减弱裂纹的扩展。结论是,超细细长层压微结构,可能的界面脱粘和大量{001}劈裂面的存在共同导致了分层的发生。分层断裂主要通过促进沿RD的裂纹分支并因此抑制沿v形缺口方向的裂纹扩展来增强上层架架能量,最终导致更大的塑性变形和吸收能的显着增加。除了分层增韧外,亚稳态残留奥氏体的相变诱导塑性(TRIP)效应还被认为是高低温韧性的原因,它可以释放裂纹尖端的应力集中,从而减弱裂纹的扩展。可能的界面脱粘和大量{001}分裂平面的存在导致分层的发生。分层断裂主要通过促进沿RD的裂纹分支并因此抑制沿v形缺口方向的裂纹扩展来增强上层架架能量,最终导致更大的塑性变形和吸收能的显着增加。除了分层增韧外,亚稳态残留奥氏体的相变诱导塑性(TRIP)效应还被认为是高低温韧性的原因,它可以释放裂纹尖端的应力集中,从而减弱裂纹的扩展。可能的界面脱粘和大量{001}分裂平面的存在导致分层的发生。分层断裂主要通过促进沿RD的裂纹分支并因此抑制沿v形缺口方向的裂纹扩展来增强上层架架能量,最终导致更大的塑性变形和吸收能的显着增加。除了分层增韧外,亚稳态残留奥氏体的相变诱导塑性(TRIP)效应还被认为是高低温韧性的原因,它可以释放裂纹尖端的应力集中,从而减弱裂纹的扩展。分层断裂主要通过促进沿RD的裂纹分支并因此抑制沿v形缺口方向的裂纹扩展来增强上层架架能量,最终导致更大的塑性变形和吸收能的显着增加。除了分层增韧外,亚稳态残留奥氏体的相变诱导塑性(TRIP)效应还被认为是高低温韧性的原因,它可以释放裂纹尖端的应力集中,从而减弱裂纹的扩展。分层断裂主要通过促进沿RD的裂纹分支并因此抑制沿v形缺口方向的裂纹扩展来增强上层架架能量,最终导致更大的塑性变形和吸收能的显着增加。除了分层增韧外,亚稳态残留奥氏体的相变诱导塑性(TRIP)效应还被认为是高低温韧性的原因,它可以释放裂纹尖端的应力集中,从而减弱裂纹的扩展。

更新日期:2017-09-18
down
wechat
bug