当前位置: X-MOL 学术Dalton Trans. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tailoring the morphology followed by the electrochemical performance of NiMn-LDH nanosheet arrays through controlled Co-doping for high-energy and power asymmetric supercapacitors
Dalton Transactions ( IF 3.5 ) Pub Date : 2017-09-01 00:00:00 , DOI: 10.1039/c7dt01863k
Saurabh Singh 1, 2, 3, 4, 5 , Nanasaheb M. Shinde 1, 2, 3, 4, 5 , Qi Xun Xia 1, 2, 3, 4, 5 , Chandu V. V. M. Gopi 2, 3, 4, 6 , Je Moon Yun 1, 2, 3, 4, 5 , Rajaram S. Mane 7, 8, 9, 10 , Kwang Ho Kim 1, 2, 3, 4, 5
Affiliation  

Herein, we tailor the surface morphology of nickel–manganese-layered double hydroxide (NiMn-LDH) nanostructures on 3D nickel-foam via a step-wise cobalt (Co)-doping hydrothermal chemical process. At the 10% optimum level of Co-doping, we noticed a thriving tuned morphological pattern of NiMn-LDH nanostructures (NiCoMn-LDH (10%)) in terms of the porosity of the nanosheet (NS) arrays which not only improves the rate capability as well as cycling stability, but also demonstrates nearly two-fold specific capacitance enhancement compared to Co-free and other NiCoMn-LDH electrodes with a half-cell configuration in 3 M KOH, suggesting that Co-doping is indispensable for improving the electrochemical performance of NiMn-LDH electrodes. Moreover, when this high performing NiCoMn-LDH (10%) electrode is employed as a cathode material to fabricate an asymmetric supercapacitor (ASC) device with reduced graphene oxide (rGO) as an anode material, excellent energy storage performance (57.4 Wh kg−1 at 749.9 W kg−1) and cycling stability (89.4% capacitive retention even after 2500 cycles) are corroborated. Additionally, we present a demonstration of illuminating a light emitting diode for 600 s with the NiCoMn-LDH (10%)//rGO ASC device, evidencing the potential of the NiCoMn-LDH (10%) electrode in fabricating energy storage devices.

中文翻译:

通过受控共掺杂为高能和功率不对称超级电容器量身定制NiMn-LDH纳米片阵列的形貌和电化学性能

在这里,我们通过3D镍泡沫材料对镍锰层状双氢氧化物(NiMn-LDH)纳米结构的表面形貌进行裁剪逐步掺杂钴(Co)的水热化学过程。在10%的最佳Co掺杂水平下,我们注意到,就纳米片(NS)阵列的孔隙率而言,NiMn-LDH纳米结构(NiCoMn-LDH(10%))的微调形貌已得到改善,这不仅提高了速率性能和循环稳定性,但与在3 M KOH中具有半电池配置的无Co和其他NiCoMn-LDH电极相比,其比电容也提高了近两倍,这表明Co掺杂对于改善电化学性能是必不可少的NiMn-LDH电极的性能 此外,当将此高性能NiCoMn-LDH(10%)电极用作阴极材料,以还原氧化石墨烯(rGO)作为阳极材料制造不对称超级电容器(ASC)器件时,储能性能优异(57。-1在749.9千克w ^ -1)和循环稳定性(89.4%保留电容即使经过2500个循环)被证实。此外,我们展示了使用NiCoMn-LDH(10%)// rGO ASC器件照明发光二极管600 s的演示,证明了NiCoMn-LDH(10%)电极在制造储能器件中的电势。
更新日期:2017-09-18
down
wechat
bug