当前位置: X-MOL 学术J. Mater. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transport in polymer-supported chemically-doped CVD graphene
Journal of Materials Chemistry C ( IF 6.4 ) Pub Date : 2017-09-07 00:00:00 , DOI: 10.1039/c7tc02263h
Moon H. Kang 1, 2, 3, 4, 5 , Guangyu Qiu 6, 7, 8 , Bingan Chen 5, 9, 10, 11 , Alex Jouvray 5, 9, 10, 11 , Kenneth B. K. Teo 5, 9, 10, 11 , Cinzia Cepek 12, 13, 14, 15 , Lawrence Wu 6, 7, 8 , Jongmin Kim 1, 2, 3, 4, 5 , William I. Milne 1, 2, 3, 4, 5 , Matthew T. Cole 5, 16, 17, 18
Affiliation  

In this study we report on the electron transport in flexible-transparent polymer supported chemically doped chemical vapour deposited (CVD) graphene. We investigate the modified carrier transport following doping with various metal chlorides. An increase in the work function was noted for AuCl3-, FeCl3-, IrCl3-, and RhCl3-doping, whilst only SnCl2 doping showed a reduced work function. We attribute this to dopant-mediated charge transfer resulting in the formation of neutral atomic species. The neutral and near-neutral atomic populations produced metallic aggregates, with this agglomeration level critically dependent on the cohesive energy of the metallic component in each dopant. Micron-scale spatial conductivity mapping highlighted the spatially uniform low resistance of AuCl3-doped graphene. Local conductivity enhancements at grain boundaries and lattice defects within the as-synthesised polycrystalline graphene suggested that the dopant molecules tend to reside at lattice imperfections. Temperature dependent transport studies indicated that the shifted work function improved electrical conductivity due to the increase of barrier transparency between grain boundaries. Variable Range Hopping (VRH) dominated at temperatures <140 K in undoped graphene, whereas combined Nearest Neighbour Hopping (NNH) and diffusive transport appears to play a major role throughout the transport in all doped samples. The findings herein reveal that the underlying extended transport mechanisms associated with chemically doped CVD graphene transferred to polymer supports contrast with the highly localised transport in undoped graphene.

中文翻译:

在聚合物负载的化学掺杂CVD石墨烯中的传输

在这项研究中,我们报告了在柔性透明聚合物负载的化学掺杂化学气相沉积(CVD)石墨烯中的电子传输。我们研究了掺杂各种金属氯化物后的改进的载流子传输。对于AuCl 3-,FeCl 3-,IrCl 3-和RhCl 3掺杂,功函有所增加,而仅SnCl 2掺杂显示出降低的功函数。我们将此归因于掺杂剂介导的电荷转移,导致形成中性原子物种。中性和接近中性的原子团簇产生金属聚集体,其聚集水平严格取决于每种掺杂剂中金属组分的内聚能。微米级空间电导率图突出显示了AuCl 3的空间均匀低电阻掺杂的石墨烯。合成的多晶石墨烯中晶界处的局部导电性增强和晶格缺陷表明,掺杂剂分子倾向于驻留在晶格缺陷处。温度依赖性的运输研究表明,由于晶界之间势垒透明性的增加,转移后的功函提高了电导率。在未掺杂的石墨烯中,变程跳变(VRH)在<140 K的温度下占主导地位,而在所有掺杂样品的整个传输过程中,最近邻跳变(NNH)和扩散传输似乎都起着主要作用。本文的发现揭示了与转移到聚合物上的化学掺杂的CVD石墨烯相关的潜在的扩展传输机制与未掺杂的石墨烯中的高度局部化的传输形成对比。
更新日期:2017-09-15
down
wechat
bug