当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental Investigation of the Transformation of Oil Shale with Fracturing Fluids under Microwave Heating in the Presence of Nanoparticles
Energy & Fuels ( IF 5.3 ) Pub Date : 2017-09-15 00:00:00 , DOI: 10.1021/acs.energyfuels.7b00908
Zhaozhong Yang 1 , Jingyi Zhu 1 , Xiaogang Li 1 , Dan Luo 1, 2 , Shuangyu Qi 1 , Min Jia 1
Affiliation  

Traditional methods of exploiting oil shale such as mining or in situ electric heating cause environmental pollution, and they have huge energy losses and high costs. These problems can be solved by combining microwave heating with hydraulic fracturing for the in situ exploitation of oil shale. In this study, an experimental microwave apparatus was manufactured for laboratory experiments. Different weight proportions of iron oxide nanoparticles (0.1, 0.5, and 1 wt %), microwave output power (600, 800, and 1000 W), and ultimate reaction temperatures (550, 750, and 950 °C) were taken into account in the design of an orthogonal experiment. Temperature distributions were influenced by microwave power, as well as by the concentration of iron oxide nanoparticles. The iron oxide nanoparticles facilitated a noticeable rise in the temperature of the oil shale in a short time. The experimental results confirmed the advantages of microwave heating, compared to conventional heating, in terms of temperature increases and improved yields of higher quality oil. Specifically, the oil collected under microwave irradiation contained more saturation and aromatics, and less sulfur and nitrogen, than that obtained by conventional heating. The highest oil yield and the best oil quality were obtained with the parameters of output power of 800 W, ultimate reaction temperature of 950 °C, and iron oxide nanoparticles at 0.1 wt %. Our findings contribute to the application of microwave technology to unconventional resources, and field tests at small scale should be supported.

中文翻译:

纳米粒子存在下微波加热下压裂液转化油页岩的实验研究

传统的开采油页岩的方法,例如采矿或现场电加热,都会造成环境污染,并且能源损失巨大且成本高昂。这些问题可以通过将微波加热与水力压裂相结合来现场开发油页岩来解决。在这项研究中,制造了用于实验室实验的实验微波设备。氧化铁纳米颗粒的不同重量比例(0.1、0.5和1 wt%),微波输出功率(600、800和1000 W)以及最终反应温度(550、750和950°C)已被考虑在内。正交实验的设计。温度分布受微波功率以及氧化铁纳米颗粒浓度的影响。氧化铁纳米颗粒促使油页岩的温度在短时间内明显升高。实验结果证实了与常规加热相比,微波加热在温度升高和更高质量油的产率提高方面的优势。具体地说,与通过常规加热获得的油相比,在微波辐射下收集的油包含更多的饱和和芳族化合物,以及更少的硫和氮。以800 W的输出功率,950°C的最终反应温度和0.1 wt%的氧化铁纳米粒子为参数,可获得最高的出油率和最佳的油质。我们的发现有助于将微波技术应用于非常规资源,应支持小规模的现场测试。实验结果证实了与常规加热相比,微波加热在温度升高和更高质量油的产率提高方面的优势。具体地说,与通过常规加热获得的油相比,在微波辐射下收集的油包含更多的饱和和芳族化合物,以及更少的硫和氮。以800 W的输出功率,950°C的最终反应温度和0.1 wt%的氧化铁纳米粒子为参数,可获得最高的出油率和最佳的油质。我们的发现有助于将微波技术应用于非常规资源,应支持小规模的现场测试。实验结果证实了与常规加热相比,微波加热在温度升高和更高质量油的产率提高方面的优势。具体地说,与通过常规加热获得的油相比,在微波辐射下收集的油包含更多的饱和和芳族化合物,以及更少的硫和氮。以800 W的输出功率,950°C的最终反应温度和0.1 wt%的氧化铁纳米粒子为参数,可获得最高的出油率和最佳的油质。我们的发现有助于将微波技术应用于非常规资源,因此应支持小规模的现场测试。与通过常规加热获得的油相比,在微波辐射下收集的油包含更多的饱和烃和芳烃,以及更少的硫和氮。以800 W的输出功率,950°C的最终反应温度和0.1 wt%的氧化铁纳米粒子为参数,可获得最高的出油率和最佳的油质。我们的发现有助于将微波技术应用于非常规资源,应支持小规模的现场测试。与通过常规加热获得的油相比,在微波辐射下收集的油包含更多的饱和烃和芳烃,以及更少的硫和氮。以800 W的输出功率,950°C的最终反应温度和0.1 wt%的氧化铁纳米粒子为参数,可获得最高的出油率和最佳的油质。我们的发现有助于将微波技术应用于非常规资源,应支持小规模的现场测试。
更新日期:2017-09-15
down
wechat
bug