当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials
ACS Photonics ( IF 6.5 ) Pub Date : 2017-09-29 00:00:00 , DOI: 10.1021/acsphotonics.7b00558
P. A. D. Gonçalves 1, 2, 3 , Sanshui Xiao 1, 3 , N. M. R. Peres 4 , N. Asger Mortensen 2, 3, 5
Affiliation  

Plasmon coupling and hybridization in complex nanostructures constitutes a fertile playground for controlling light at the nanoscale. Here, we present a semi-analytical model to describe the emergence of hybrid plasmon modes guided along 2D nanoslits. In particular, we find two new coupled plasmonic resonances arising from symmetric and antisymmetric hybridizations of the edge plasmons of the constituent half-sheets. These give rise to an antibonding and a bonding mode, lying above and below the energy of the bare edge plasmon. Our treatment is notably generic, being able to account for slits of arbitrary width, and remains valid irrespective of the 2D conductive material (e.g., doped graphene, 2D transition metal dichalcogenides, or phosphorene). We derive the dispersion relation of the hybrid modes of a 2D nanoslit along with the corresponding induced potential and electric field distributions. We also discuss the plasmonic spectrum of a 2D slit together with the one from its complementarity structure, that is, a ribbon. Finally, the case of a nanoslit made from an anisotropic 2D material is considered. Focusing on black phosphorus (which is highly anisotropic), we investigate the features of its plasmonic spectrum along the two main crystal axes. Our results offer insights into the interaction of plasmons in complex 2D nanostructures, thereby expanding the current toolkit of plasmonic resonances in 2D materials and paving the way for the emergence of future compact devices based on atomically thin plasmonics.

中文翻译:

2D纳米缝隙中的杂化等离子体:从石墨烯到各向异性2D材料

复杂纳米结构中的等离激元偶联和杂交构成了一个肥沃的运动场,用于控制纳米级的光。在这里,我们提出了一个半解析模型来描述沿着2D纳米缝隙引导的混合等离子体激元模式的出现。特别是,我们发现了两个新的耦合等离振子共振,这些共振是由构成半片的边缘等离激元的对称和反对称杂交引起的。这些产生了在裸边缘等离子体激元的能量之上和之下的抗键合和键合模式。我们的处理特别通用,能够解决任意宽度的缝隙,并且不管2D导电材料(例如,掺杂的石墨烯,2D过渡金属二卤化物或磷烯)如何都有效。我们推导了二维纳米缝混合模式的色散关系以及相应的感应电势和电场分布。我们还将讨论二维缝隙的等离激元光谱及其互补结构(即带状)。最后,考虑由各向异性2D材料制成的纳米缝的情况。着眼于黑磷(高度各向异性),我们研究了其沿两个主晶轴的等离激元光谱的特征。我们的结果提供了对复杂2D纳米结构中等离激元相互作用的见解,从而扩展了2D材料中等离激元共振的当前工具包,并为未来基于原子薄等离激元的紧凑型设备的出现铺平了道路。我们还将讨论二维缝隙的等离激元光谱及其互补结构(即带状)。最后,考虑由各向异性2D材料制成的纳米缝的情况。着眼于黑磷(高度各向异性),我们研究了其沿两个主晶轴的等离激元光谱的特征。我们的结果提供了对复杂2D纳米结构中等离激元相互作用的见解,从而扩展了2D材料中等离激元共振的当前工具包,并为未来基于原子薄等离激元的紧凑型设备的出现铺平了道路。我们还将讨论二维缝隙的等离激元光谱及其互补结构(即带状)。最后,考虑由各向异性2D材料制成的纳米缝的情况。着眼于黑磷(高度各向异性),我们研究了其沿两个主晶轴的等离激元光谱的特征。我们的结果提供了对复杂2D纳米结构中等离激元相互作用的见解,从而扩展了2D材料中等离激元共振的当前工具包,并为未来基于原子薄等离激元的紧凑型设备的出现铺平了道路。着眼于黑磷(高度各向异性),我们研究了其沿两个主晶轴的等离激元光谱的特征。我们的结果提供了对复杂2D纳米结构中等离激元相互作用的见解,从而扩展了2D材料中等离激元共振的当前工具包,并为未来基于原子薄等离激元的紧凑型设备的出现铺平了道路。着眼于黑磷(高度各向异性),我们研究了其沿两个主晶轴的等离激元光谱的特征。我们的结果提供了对复杂2D纳米结构中等离激元相互作用的见解,从而扩展了2D材料中等离激元共振的当前工具包,并为未来基于原子薄等离激元的紧凑型设备的出现铺平了道路。
更新日期:2017-09-29
down
wechat
bug