当前位置: X-MOL 学术ACS Omega › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photon-Induced Light Emission from Foamed Gold with Micro/Nanohollow Sphere Structures
ACS Omega ( IF 3.7 ) Pub Date : 2017-09-14 00:00:00 , DOI: 10.1021/acsomega.7b00798
Chaojian Li 1 , Lan Ding 1 , Changneng Liang 1 , Jie Zhang 1 , Chao Zhang 2 , Hongying Mei 2 , Chao Wang 2 , Weidong Wu 3 , Jin Zhang 1 , Wen Xu 1, 2
Affiliation  

We present a study on photon-induced light emission at room temperature from macroscale foamed gold with micro/nanoscale hollow spheres synthesized by seed-mediated growth method. Samples with a fixed sphere diameter but different Au densities are examined. It is demonstrated that strong and characteristic light emission from these samples can be achieved under optical excitation. In a short excitation wavelength regime (280–470 nm), the peak position in the photoemission spectrum increases almost linearly with excitation wavelength. In a relatively long-wavelength excitation regime (478–520 nm), photoluminescence (PL) can be observed where the peak position in the PL spectrum depends very little on excitation wavelength and two peaks can be seen in the PL emission spectrum. These effects do not change significantly with varying sample density, although it is found that the intensity of the light emission increases with sample density. We find that the features of the PL emission from foamed gold with micro/nanoscale hollow spheres differ significantly from those observed for Au nanoparticles. This study is relevant to the application of Au micro/nanostructures as advanced optoelectronic materials and devices.

中文翻译:

具有微/纳米空心球结构的泡沫金的光子诱导发光

我们提出了一种在室温下从宏观起泡的金与通过种子介导的生长方法合成的微米级/纳米级空心球的光子诱导的光发射的研究。检查具有固定球体直径但金密度不同的样品。结果表明,在光激发下,可以从这些样品中获得强而有特征的发光。在短激发波长范围(280–470 nm)中,光发射光谱中的峰值位置几乎随激发波长线性增加。在相对长波长的激发态(478-520 nm)中,可以观察到光致发光(PL),其中PL光谱中的峰位置几乎不取决于激发波长,并且在PL发射光谱中可以看到两个峰。这些影响不会随着样品密度的变化而显着变化,尽管发现发光强度随样品密度增加而增加。我们发现,具有微米/纳米级空心球的泡沫金的PL发射特征与Au纳米颗粒观察到的特征显着不同。这项研究与Au微米/纳米结构作为先进的光电材料和器件的应用有关。
更新日期:2017-09-14
down
wechat
bug