当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms
ACS Photonics ( IF 6.5 ) Pub Date : 2017-10-19 00:00:00 , DOI: 10.1021/acsphotonics.7b00751
Lucas V. Besteiro 1, 2 , Xiang-Tian Kong 1, 2 , Zhiming Wang 1 , Gregory Hartland 3 , Alexander O. Govorov 1, 2
Affiliation  

Generation of energetic (hot) electrons is an intrinsic property of any plasmonic nanostructure under illumination. Simultaneously, a striking advantage of metal nanocrystals over semiconductors lies in their very large absorption cross sections. Therefore, metal nanostructures with strong and tailored plasmonic resonances are very attractive for photocatalytic applications in which excited electrons play an important role. However, the central questions in the problem of plasmonic hot electrons are the number of optically excited energetic electrons in a nanocrystal and how to extract such electrons. Here we develop a theory describing the generation rates and the energy distributions of hot electrons in nanocrystals with various geometries. In our theory, hot electrons are generated due to surfaces and hot spots. As expected, the formalism predicts that large optically excited nanocrystals show the excitation of mostly low-energy Drude electrons, whereas plasmons in small nanocrystals involve mostly high-energy (hot) electrons. We obtain analytical expressions for the distribution functions of excited carriers for simple shapes. For complex shapes with hot spots and for small quantum nanocrystals, our results are computational. By looking at the energy distributions of electrons in an optically excited nanocrystal, we see how the quantum many-body state in small particles evolves toward the classical state described by the Drude model when increasing nanocrystal size. We show that the rate of surface decay of plasmons in nanocrystals is directly related to the rate of generation of hot electrons. On the basis of a detailed many-body theory involving kinetic coefficients, we formulate a simple scheme describing how the plasmon in a nanocrystal dephases over time. In most nanocrystals, the main decay mechanisms of a plasmon are the Drude friction-like process and the interband electron–hole excitation, and the secondary path comes from generation of hot electrons due to surfaces and electromagnetic hot spots. The hot-electron path strongly depends on the material system and on its shape. Correspondingly, the efficiency of hot-electron production in a nanocrystal strongly varies with size, shape, and material. The results in the paper can be used to guide the design of plasmonic nanomaterials for photochemistry and photodetectors.

中文翻译:

了解金属纳米晶体中热电子的产生和等离子体的弛豫:量子和经典机制。

高能(热)电子的产生是任何等离激元纳米结构在光照下的固有特性。同时,金属纳米晶体相对于半导体的显着优势在于其非常大的吸收截面。因此,具有强的和定制的等离振子共振的金属纳米结构对于光催化应用非常有吸引力,在光催化应用中,激发电子起着重要的作用。然而,等离子热电子问题中的中心问题是纳米晶体中光激发的高能电子的数量以及如何提取此类电子。在这里,我们开发了一种理论,描述了具有各种几何形状的纳米晶体中热电子的产生速率和能量分布。在我们的理论中,由于表面和热点而产生热电子。不出所料 形式主义预测,大的光激发纳米晶体显示出大部分低能的Drude电子的激发,而小纳米晶体中的等离激元则主要包含高能(热)电子。我们获得了简单形状的激发载流子的分布函数的解析表达式。对于具有热点的复杂形状以及小的量子纳米晶体,我们的结果是计算结果。通过查看光学激发的纳米晶体中电子的能量分布,我们可以看到当增大纳米晶体尺寸时,小粒子中的量子多体态如何演化为Drude模型所描述的经典态。我们表明,纳米晶体中的等离激元表面衰变速率与热电子的产生速率直接相关。在涉及动力学系数的详细多体理论的基础上,我们制定了一个简单的方案来描述纳米晶体中的等离激元如何随着时间的流逝而发生相分离。在大多数纳米晶体中,等离激元的主要衰减机制是类似于Drude的摩擦过程和带间电子-空穴激发,其次要路径来自由于表面和电磁热点而产生的热电子。热电子路径在很大程度上取决于材料系统及其形状。相应地,纳米晶体中热电子生产的效率随尺寸,形状和材料而强烈变化。本文的结果可用于指导用于光化学和光检测器的等离激元纳米材料的设计。在大多数纳米晶体中,等离激元的主要衰减机制是类似于Drude的摩擦过程和带间电子-空穴激发,其次要路径来自由于表面和电磁热点而产生的热电子。热电子路径在很大程度上取决于材料系统及其形状。相应地,纳米晶体中热电子生产的效率随尺寸,形状和材料而强烈变化。本文的结果可用于指导用于光化学和光检测器的等离激元纳米材料的设计。在大多数纳米晶体中,等离激元的主要衰减机制是类似于Drude的摩擦过程和带间电子-空穴激发,其次要路径来自由于表面和电磁热点而产生的热电子。热电子路径在很大程度上取决于材料系统及其形状。相应地,纳米晶体中热电子生产的效率随尺寸,形状和材料而强烈变化。本文的结果可用于指导用于光化学和光检测器的等离激元纳米材料的设计。热电子路径在很大程度上取决于材料系统及其形状。相应地,纳米晶体中热电子生产的效率随尺寸,形状和材料而强烈变化。本文的结果可用于指导用于光化学和光检测器的等离激元纳米材料的设计。热电子路径在很大程度上取决于材料系统及其形状。相应地,纳米晶体中热电子生产的效率随尺寸,形状和材料而强烈变化。本文的结果可用于指导用于光化学和光检测器的等离激元纳米材料的设计。
更新日期:2017-10-19
down
wechat
bug