当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments
ACS Energy Letters ( IF 19.3 ) Pub Date : 2017-09-12 00:00:00 , DOI: 10.1021/acsenergylett.7b00607
Aniketa Shinde 1 , Santosh K. Suram 1 , Qimin Yan 2, 3, 4 , Lan Zhou 1 , Arunima K. Singh 5 , Jie Yu 1, 4, 5, 6 , Kristin A. Persson 6, 7 , Jeffrey B. Neaton 2, 3, 5, 8 , John M. Gregoire 1
Affiliation  

The solar photoelectrochemical generation of hydrogen and carbon-containing fuels comprises a critical energy technology for establishing sustainable energy resources. The photoanode, which is responsible for solar-driven oxygen evolution, has persistently limited technology advancement due to the lack of materials that exhibit both the requisite electronic properties and operational stability. Efforts to extend the lifetime of solar fuel devices increasingly focus on mitigating corrosion in the highly oxidizing oxygen evolution environment, motivating our development of a photoanode discovery pipeline that combines electronic structure calculations, Pourbaix stability screening, and high-throughput experiments. By applying the pipeline to ternary metal oxides containing manganese, we identify a promising class of corrosion-resistant materials and discover five oxygen evolution photoanodes, including the first demonstration of photoelectrocatalysis with Mn-based ternary oxides and the introduction of alkaline earth manganates as promising photoanodes for establishing a durable solar fuels technology.

中文翻译:

通过电子结构计算,Pourbaix稳定性模型和高通量实验的集成发现基于锰的太阳能燃料光阳极

氢和含碳燃料的太阳光电化学发电包括建立可持续能源的一项关键能源技术。由于缺乏能同时显示出必要的电子性能和操作稳定性的材料,负责阳极驱动氧气逸出的光电阳极一直在限制技术进步。延长太阳能燃料装置寿命的努力越来越集中在减轻高氧化性氧气逸出环境中的腐蚀上,从而推动了我们开发结合了电子结构计算,Pourbaix稳定性筛选和高通量实验的光阳极发现管线的开发。通过将管道应用于含锰的三元金属氧化物,
更新日期:2017-09-12
down
wechat
bug