当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spontaneous Emission inside a Hyperbolic Metamaterial Waveguide
ACS Photonics ( IF 7 ) Pub Date : 2017-10-02 00:00:00 , DOI: 10.1021/acsphotonics.7b00767
Diane J. Roth 1 , Alexey V. Krasavin 1 , Alexander Wade 1 , Wayne Dickson 1 , Antony Murphy 2 , Stéphane Kéna-Cohen 3 , Robert Pollard 2 , Gregory A. Wurtz 1 , David Richards 1 , Stefan A. Maier 4 , Anatoly V. Zayats 1
Affiliation  

The ability to control the rate of spontaneous emission via the design of nanostructured materials with appropriate electromagnetic properties is important in the development of novel fast sources of incoherent illumination, single photon emitters for quantum optical applications, laser physics, and de-excitation of electronic states leading to photodegradation in organic materials. Here, for an emitter placed inside a hyperbolic metamaterial slab of finite thickness comprised of an array of gold nanorods, we experimentally demonstrate an enhancement of the fluorescence coupled to the waveguided plasmon-polariton modes of the metamaterial. We show that fluorescence properties in such a finite-size metamaterial design behave differently from commonly studied infinite metamaterials or when the emitters are placed near the metamaterial interface. The emitters inside the metamaterial waveguide exhibit an almost 50-fold reduction of their lifetime, whereas a much smaller reduction (a factor of 2–3) is observed for emitters placed on top of the metamaterial. While in both cases the emission from the metamaterial can be radiated in the far field (up to 18% of the total emitted intensity, depending on the emitter position with respect to the nanorods), the coupling to waveguided modes of the metamaterial slab provides an efficient means to shape the emission spectrum for each polarization. The considered geometry is ideal for designing integrated, fast optical sources for data communications, sensing, or quantum photonic applications.

中文翻译:

双曲超材料波导内的自发辐射

通过设计具有适当电磁特性的纳米结构材料来控制自发发射速率的能力,对于开发新型非相干照明快速光源,用于量子光学应用的单光子发射器,激光物理学以及电子态去激化至关重要。导致有机材料发生光降解。在这里,对于放置在由金纳米棒阵列构成的有限厚度的双曲线超材料平板内部的发射器,我们实验证明了与超材料的波导等离激元极化模耦合的荧光增强。我们表明,在这种有限尺寸的超材料设计中,荧光特性的行为不同于通常研究的无限超材料,或者当发射器放置在超材料界面附近时。超材料波导内部的发射器寿命缩短了近50倍,而放置在超材料顶部的发射器则观察到了更小的减小(2-3倍)。在两种情况下,超材料的发射都可以在远场中辐射(高达总发射强度的18%,具体取决于发射器相对于纳米棒的位置),而与超材料板的波导模式的耦合则提供了塑造每个极化的发射光谱的有效手段。考虑的几何形状非常适合为数据通信,传感或量子光子应用设计集成的快速光源。相比之下,放置在超材料顶部的发射器观察到的减小量要小得多(2-3倍)。在两种情况下,超材料的发射都可以在远场中辐射(高达总发射强度的18%,具体取决于发射器相对于纳米棒的位置),而与超材料板的波导模式的耦合则提供了塑造每个极化的发射光谱的有效手段。考虑的几何形状非常适合为数据通信,传感或量子光子应用设计集成的快速光源。相比之下,放置在超材料顶部的发射器观察到的减小量要小得多(2-3倍)。在两种情况下,超材料的发射都可以在远场中辐射(高达总发射强度的18%,具体取决于发射器相对于纳米棒的位置),而与超材料板的波导模式的耦合则提供了塑造每个极化的发射光谱的有效手段。考虑的几何形状非常适合为数据通信,传感或量子光子应用设计集成的快速光源。与超材料平板的波导模式的耦合提供了一种有效的方法,可以对每个极化的发射光谱进行整形。考虑的几何形状非常适合为数据通信,传感或量子光子应用设计集成的快速光源。与超材料平板的波导模式的耦合提供了一种有效的方法,可以对每个极化的发射光谱进行整形。考虑的几何形状非常适合为数据通信,传感或量子光子应用设计集成的快速光源。
更新日期:2017-10-02
down
wechat
bug