当前位置: X-MOL 学术J. Clin. Invest. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva
The Journal of Clinical Investigation ( IF 15.9 ) Pub Date : 2017-07-31 , DOI: 10.1172/jci93521
Kyosuke Hino , Kazuhiko Horigome , Megumi Nishio , Shingo Komura , Sanae Nagata , Chengzhu Zhao , Yonghui Jin , Koichi Kawakami , Yasuhiro Yamada , Akira Ohta , Junya Toguchida , Makoto Ikeya

Fibrodysplasia ossificans progressiva (FOP) is a rare and intractable disease characterized by extraskeletal bone formation through endochondral ossification. Patients with FOP harbor point mutations in ACVR1, a type I receptor for BMPs. Although mutated ACVR1 (FOP-ACVR1) has been shown to render hyperactivity in BMP signaling, we and others have uncovered a mechanism by which FOP-ACVR1 mistransduces BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling. Although Activin-A evokes enhanced chondrogenesis in vitro and heterotopic ossification (HO) in vivo, the underlying mechanisms have yet to be revealed. To this end, we developed a high-throughput screening (HTS) system using FOP patient–derived induced pluripotent stem cells (FOP-iPSCs) to identify pivotal pathways in enhanced chondrogenesis that are initiated by Activin-A. In a screen of 6,809 small-molecule compounds, we identified mTOR signaling as a critical pathway for the aberrant chondrogenesis of mesenchymal stromal cells derived from FOP-iPSCs (FOP-iMSCs). Two different HO mouse models, an FOP model mouse expressing FOP-ACVR1 and an FOP-iPSC–based HO model mouse, revealed critical roles for mTOR signaling in vivo. Moreover, we identified ENPP2, an enzyme that generates lysophosphatidic acid, as a linker of FOP-ACVR1 and mTOR signaling in chondrogenesis. These results uncovered the crucial role of the Activin-A/FOP-ACVR1/ENPP2/mTOR axis in FOP pathogenesis.

中文翻译:

激活素A增强mTOR信号传导,促进骨化性纤维增生中异常软骨形成

骨化性纤维增生症(FOP)是一种罕见且难治的疾病,其特征是通过软骨内骨化形成骨骼外骨骼。具有FOP的患者在ACVR1(BMP的I型受体)中存在点突变。尽管已显示突变的ACVR1(FOP-ACVR1)在BMP信号传导中表现出过度活跃性,但我们和其他人发现了FOP-ACVR1响应激活素A(正常情况下会转导TGF-β信号传导的分子)误转BMP信号传导的机制。尽管激活素A在体外和体内异位骨化(HO)均可增强软骨形成,但其潜在机制尚待揭示。为此,我们开发了一种高通量筛选(HTS)系统,该系统使用FOP患者衍生的诱导多能干细胞(FOP-iPSCs)来识别由激活素A启动的增强软骨形成的关键途径。在6,809个小分子化合物的筛选中,我们确定了mTOR信号传导是衍生自FOP-iPSC(FOP-iMSCs)的间充质基质细胞异常软骨形成的关键途径。两种不同的HO小鼠模型,表达FOP-ACVR1的FOP模型小鼠和基于FOP-iPSC的HO模型小鼠,揭示了mTOR体内信号传导的关键作用。此外,我们确定了ENPP2(一种产生溶血磷脂酸的酶)是软骨形成中FOP-ACVR1和mTOR信号转导的连接子。这些结果揭示了激活素-A / FOP-ACVR1 / ENPP2 / mTOR轴在FOP发病机理中的关键作用。809个小分子化合物,我们确定mTOR信号传导是源自FOP-iPSC(FOP-iMSCs)的间充质基质细胞异常软骨形成的关键途径。两种不同的HO小鼠模型,表达FOP-ACVR1的FOP模型小鼠和基于FOP-iPSC的HO模型小鼠,揭示了mTOR体内信号传导的关键作用。此外,我们确定了ENPP2(一种产生溶血磷脂酸的酶)是软骨形成中FOP-ACVR1和mTOR信号转导的连接子。这些结果揭示了激活素-A / FOP-ACVR1 / ENPP2 / mTOR轴在FOP发病机理中的关键作用。809个小分子化合物,我们确定mTOR信号传导是源自FOP-iPSC(FOP-iMSCs)的间充质基质细胞异常软骨形成的关键途径。两种不同的HO小鼠模型,表达FOP-ACVR1的FOP模型小鼠和基于FOP-iPSC的HO模型小鼠,揭示了mTOR体内信号传导的关键作用。此外,我们确定了ENPP2(一种产生溶血磷脂酸的酶)是软骨形成中FOP-ACVR1和mTOR信号转导的连接子。这些结果揭示了激活素-A / FOP-ACVR1 / ENPP2 / mTOR轴在FOP发病机理中的关键作用。揭示了mTOR体内信号传导的关键作用。此外,我们确定了ENPP2(一种产生溶血磷脂酸的酶)是软骨形成中FOP-ACVR1和mTOR信号转导的连接子。这些结果揭示了激活素-A / FOP-ACVR1 / ENPP2 / mTOR轴在FOP发病机理中的关键作用。揭示了mTOR体内信号传导的关键作用。此外,我们确定了ENPP2(一种产生溶血磷脂酸的酶)是软骨形成中FOP-ACVR1和mTOR信号转导的连接子。这些结果揭示了激活素-A / FOP-ACVR1 / ENPP2 / mTOR轴在FOP发病机理中的关键作用。
更新日期:2017-09-08
down
wechat
bug