当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hierarchically porous carbon-coated SnO 2 @graphene foams as anodes for lithium ion storage
Carbon ( IF 10.5 ) Pub Date : 2017-11-01 , DOI: 10.1016/j.carbon.2017.09.016
Hui Xu , Jian Chen , Dan Wang , Zhengming Sun , Peigen Zhang , Yao Zhang , Xinli Guo

Abstract Graphene-based hierarchically porous materials have exhibited enormous potentials in high-performance lithium-ion batteries. However, the electrochemical performance of these materials is hampered due to the detachment of active materials from graphene upon long-term cycling. Therefore, the interfacial design between active materials and graphene is crucial for their high performance in lithium-ion storage. In this study, a hierarchically porous architecture of spatially confining carbon-coated SnO 2 nanospheres (C-SnO 2 NSs) within graphene foam has been designed and fabricated by employing the H-bonding effect of sodium carboxymethyl cellulose to bridge the C-SnO 2 NSs and graphene sheets in a complete encapsulation arrangement. The as-fabricated architecture not only prevents the detachment of C-SnO 2 from graphene and direct exposure of them in electrolyte, but also suppresses the electrode's pulverization caused by the large volume change of SnO 2 during charge/discharge processes, thus achieving SnO 2 interfacial and structural stability. Moreover, benefiting from the hierarchical porosity and interconnected graphene network, electrode reaction kinetics is greatly enhanced. As a result of these merits, the as-built electrode shows extraordinary rate capability (611.1 mA h g −1 at 4.0 A g −1 ; 427.9 mA h g −1 at 8.0 A g −1 ) and robust cycling stability (1458.8 mA h g −1 remaining after 700 cycles at 1.0 A g −1 ).

中文翻译:

分层多孔碳涂层 SnO 2 @graphene 泡沫作为锂离子存储阳极

摘要 基于石墨烯的分层多孔材料在高性能锂离子电池中表现出巨大的潜力。然而,这些材料的电化学性能由于长期循环时活性材料与石墨烯的分离而受到阻碍。因此,活性材料和石墨烯之间的界面设计对其在锂离子存储中的高性能至关重要。在这项研究中,通过利用羧甲基纤维素钠的氢键效应来桥接 C-SnO 2 ,​​设计并制造了石墨烯泡沫中空间受限的碳包覆 SnO 2 纳米球(C-SnO 2 NSs)的分层多孔结构。 NSs 和石墨烯片在一个完整的封装排列中。这种预制结构不仅可以防止 C-SnO 2 从石墨烯上脱离并直接暴露在电解液中,还可以抑制充放电过程中 SnO 2 体积变化大导致的电极粉化,从而实现 SnO 2界面和结构稳定性。此外,受益于分层孔隙率和互连的石墨烯网络,电极反应动力学得到极大增强。由于这些优点,建成的电极显示出非凡的倍率能力(611.1 mA hg -1 在 4.0 A g -1 ; 427.9 mA hg -1 在 8.0 A g -1 )和强大的循环稳定性(1458.8 mA hg -) 1.0 A g -1 下 700 次循环后剩余 1)。从而实现SnO 2 界面和结构的稳定性。此外,受益于分层孔隙率和互连的石墨烯网络,电极反应动力学得到极大增强。由于这些优点,建成的电极显示出非凡的倍率能力(611.1 mA hg -1 在 4.0 A g -1 ;427.9 mA hg -1 在 8.0 A g -1 )和稳健的循环稳定性(1458.8 mA hg -) 1.0 A g -1 下 700 次循环后剩余 1)。从而实现SnO 2 界面和结构的稳定性。此外,受益于分层孔隙率和互连的石墨烯网络,电极反应动力学得到极大增强。由于这些优点,建成的电极显示出非凡的倍率能力(611.1 mA hg -1 在 4.0 A g -1 ; 427.9 mA hg -1 在 8.0 A g -1 )和强大的循环稳定性(1458.8 mA hg -) 1.0 A g -1 下 700 次循环后剩余 1)。
更新日期:2017-11-01
down
wechat
bug