当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lithium dendrite growth mechanisms in liquid electrolytes
Nano Energy ( IF 16.8 ) Pub Date : 2017-09-07 , DOI: 10.1016/j.nanoen.2017.08.056
Aniruddha Jana , R. Edwin García

A unified theoretical framework of dendrite growth kinetics has been developed to account for the coupled effects of electrodeposition, surface tension, and elastic and plastic deformation. The contribution of each driving force is assessed to identify five regimes of lithium growth: thermodynamic suppression regime, incubation regime, tip-controlled growth regime, base-controlled growth regime, and mixed growth regime, in agreement with the experimental scientific literature. Tip-controlled growth shows a linear time-dependence, while base-controlled growth shows an exponential time-dependence. A minimum in the growth rate, as a result of the reaction energy barrier increase imposed on the interface by the local elastic energy, is identified in the mixed growth regime. Further, two characteristic deposition times are identified: the characteristic deposition time, t, which defines the critical time scale necessary to overcome the electrochemical energy barrier for nucleation, and the characteristic plasticity time, tσ, which corresponds to the time scale necessary for plastic flow to occur, given a local shear stress. Examples of experimentally reported transitions between tip-controlled growth and base-controlled growth are readily captured through the proposed framework. While one or more mechanisms may dominate the growth of the electrodeposit, the proposed formulation defines a road map to design dendrite-free, lithium-based anodes as a stepping stone to identify alternate chemistries.



中文翻译:

液体电解质中锂枝晶的生长机理

已经开发出树突生长动力学的统一理论框架,以解释电沉积,表面张力以及弹性和塑性变形的耦合效应。与实验科学文献相一致,评估每种驱动力的作用以鉴定出五个锂生长方案:热力学抑制方案温育方案叶尖控制的生长方案碱控制的生长方案混合生长方案尖端控制的增长显示出线性时间依赖性,而基础控制的增长显示了指数时间依赖性。在混合生长方式中,由于局部弹性能对界面施加的反应能垒增加,导致增长率的最小值被确定。此外,确定了两个特征沉积时间:特征沉积时间,Ť,它定义了克服用于成核的电化学能垒所必需的关键时间尺度,以及特征可塑性时间, Ťσ,它对应于在给定局部剪切应力的情况下发生塑性流动所需的时间尺度。通过所提出的框架很容易获得实验报道的尖端控制的生长碱基控制的生长之间的过渡的例子。尽管一种或多种机制可能主导电沉积的增长,但拟议的配方定义了路线图,以设计无枝晶的锂基阳极作为识别替代化学的垫脚石。

更新日期:2017-09-07
down
wechat
bug