当前位置: X-MOL 学术ACS Omega › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structure Evolution from Layered to Spinel during Synthetic Control and Cycling Process of Fe-Containing Li-Rich Cathode Materials for Lithium-Ion Batteries.
ACS Omega ( IF 3.7 ) Pub Date : 2017-09-08 , DOI: 10.1021/acsomega.7b00689
Taolin Zhao 1 , Na Zhou 1 , Xiaoxiao Zhang 2 , Qing Xue 2 , Yuhua Wang 1 , Minli Yang 1 , Li Li 2, 3 , Renjie Chen 2, 3
Affiliation  

As promising cathode materials for lithium-ion batteries (LIBs), Fe-containing Li-rich compounds of Li1+x Fe0.1Ni0.15Mn0.55O y (0 ≤ x ≤ 0.3 and 1.9 ≤ y ≤ 2.05) have been successfully synthesized by calcining the spherical precursors with appropriate amounts of lithium carbonate. The structures, morphologies, and chemical states of these compounds are characterized to better understand the corresponding electrochemical performances. With an increase of lithium content, Li1+x Fe0.1Ni0.15Mn0.55O y evolves from a complex layered-spinel structure to a layered structure. The lithium content also affects the average size and adhesion of the primary particles. At 0.1 C, sample x = 0.1 shows the highest first charge/discharge specific capacities (338.7 and 254.3 mA h g-1), the highest first Coulombic efficiency (75.1%), the lowest first irreversible capacity loss (84.4 mA h g-1), the highest reversible discharge specific capacity, and good rate capability. Notably, voltage fading can be alleviated through the adjustment of structural features. Such superior electrochemical performances of sample x = 0.1 are ascribed to the hierarchical micro-/nanostructure, the harmonious existence of complex layered-spinel phase, and the low charge-transfer resistance. An integral view of structure evolution from layered to spinel during synthetic control and cycling process is provided to broaden the performance scope of Li-Fe-Ni-Mn-O cathodes for LIBs.

中文翻译:

锂离子电池含铁富锂正极材料的合成控制和循环过程中从层状到尖晶石的结构演化。

作为有前景的锂离子电池(LIB)正极材料,我们成功合成了含铁富锂化合物Li1+x Fe0.1Ni0.15Mn0.55O y(0 ≤ x ≤ 0.3 和 1.9 ≤ y ≤ 2.05)。将球形前体与适量的碳酸锂一起煅烧。对这些化合物的结构、形态和化学状态进行表征,以更好地了解相应的电化学性能。随着锂含量的增加,Li1+x Fe0.1Ni0.15Mn0.55O y 从复杂的层状尖晶石结构演变为层状结构。锂含量还影响初级颗粒的平均尺寸和粘附力。在 0.1 C 时,样品 x = 0.1 显示出最高的首次充电/放电比容量(338.7 和 254.3 mA h g-1)、最高的首次库仑效率(75.1%)、最低的首次不可逆容量损失(84.4 mA h g-1) 1)、最高的可逆放电比容量,以及良好的倍率性能。值得注意的是,可以通过结构特征的调整来减轻电压衰落。x=0.1的样品如此优异的电化学性能归因于分级微/纳米结构、复杂层状尖晶石相的和谐存在以及较低的电荷转移电阻。提供了合成控制和循环过程中从层状结构到尖晶石结构演变的整体视图,以拓宽锂离子电池正极的性能范围。
更新日期:2017-09-08
down
wechat
bug