当前位置: X-MOL 学术Sustain. Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mo-doped BiVO4 thin films – high photoelectrochemical water splitting performance achieved by a tailored structure and morphology
Sustainable Energy & Fuels ( IF 5.0 ) Pub Date : 2017-09-07 00:00:00 , DOI: 10.1039/c7se00301c
Martin Rohloff 1, 2, 3, 4, 5 , Björn Anke 1, 2, 3, 4 , Siyuan Zhang 4, 6, 7 , Ulrich Gernert 2, 3, 4, 8 , Christina Scheu 4, 6, 7 , Martin Lerch 1, 2, 3, 4 , Anna Fischer 4, 5, 9, 10, 11
Affiliation  

The n-type semiconductor bismuth vanadate (BiVO4) is one of the most promising ternary oxide materials for visible light-induced water oxidation, offering a theoretical solar-to-hydrogen efficiency of 9.1%. However, several factors strongly limit its actual efficiency and among these, poor charge transport has been identified as one major limitation to be overcome. Many efforts have been made to improve charge transport and charge separation in BiVO4 including various doping strategies as well as nanostructuring the absorber to the dimension of its charge carrier diffusion length. In this article, we present a new wet chemical synthesis approach to fabricate pristine and Mo-doped BiVO4 thin film photoanodes. Starting from a solution containing metalorganic Bi, V and Mo precursors, homogeneous and reproducible thin films can be fabricated by a simple procedure of dip-coating and subsequent calcination in air. Structural and morphological characterization reveals that the polycrystalline BiVO4 thin films crystallize in the monoclinic scheelite structure in micrometer-sized randomly oriented, porous domains. The small band-gap scheelite structure is maintained upon Mo doping into the BiVO4 lattice, yielding optimized light harvesting and improved charge carrier transport properties. As a result, the photoelectrochemical performance regarding water oxidation of the as-synthesized Mo-doped BiVO4 thin film photoanodes is highly improved with respect to their pristine counterparts. Photocurrent densities of 1.9 mA cm−2 and 4.6 mA cm−2 at 1.23 V vs. RHE under visible light illumination (100 mW cm−2) are measured for unmodified and CoPi-modified Mo-doped BiVO4 photoanodes respectively, both of which are amongst the highest values reported for modified BiVO4 single-layer design photoanodes so far.

中文翻译:

钼掺杂的BiVO 4薄膜–通过定制的结构和形态实现高光电化学水分解性能

n型半导体钒酸铋(BiVO 4)是用于可见光诱导水氧化的最有前景的三元氧化物材料之一,理论上的太阳能转化效率为9.1%。但是,有几个因素严重限制了其实际效率,其中,不良的电荷传输已被确定为要克服的主要限制之一。为了改善BiVO 4中的电荷传输和电荷分离,已经进行了许多努力,包括各种掺杂策略,以及将吸收体纳米结构化至其电荷载流子扩散长度的尺寸。在本文中,我们提出了一种新的湿法化学合成方法来制造原始和Mo掺杂的BiVO 4薄膜光阳极。从包含金属有机Bi,V和Mo前驱体的溶液开始,可以通过浸涂和随后在空气中煅烧的简单程序来制造均匀且可复制的薄膜。结构和形态特征表明,多晶BiVO 4薄膜在微米大小的随机取向的多孔区域中在单斜白钨矿结构中结晶。当Mo掺杂到BiVO 4晶格中时,可以保持较小的带隙白钨矿结构,从而优化了光收集并改善了载流子传输性能。结果,与合成的Mo掺杂的BiVO 4的水氧化有关的光电化学性能。相对于原始的光电阳极,薄膜光阳极得到了极大的改进。的1.9毫安厘米光电流密度-2和4.6毫安厘米-2在的1.23V相对于下可见光照明RHE(100毫瓦厘米-2)是未修饰的和COPI改性掺Mo BiVO测量4光阳极分别,这两者是迄今为止报道的改进的BiVO 4单层设计光电阳极的最高值。
更新日期:2017-09-07
down
wechat
bug