当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface Energy‐Controlled SERS Substrates for Molecular Concentration at Plasmonic Nanogaps
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2017-09-06 , DOI: 10.1002/adfm.201703376
Sung-Gyu Park 1 , ChaeWon Mun 1 , Xiaofei Xiao 2 , Avi Braun 2 , Sunho Kim 1 , Vincenzo Giannini 2, 3 , Stefan A. Maier 2 , Dong-Ho Kim 1
Affiliation  

Positioning probe molecules at electromagnetic hot spots with nanometer precision is required to achieve highly sensitive and reproducible surface‐enhanced Raman spectroscopy (SERS) analysis. In this article, molecular positioning at plasmonic nanogaps is reported using a high aspect ratio (HAR) plasmonic nanopillar array with a controlled surface energy. A large‐area HAR plasmonic nanopillar array is generated using a nanolithography‐free simple process involving Ar plasma treatment applied to a smooth polymer surface and the subsequent evaporation of metal onto the polymer nanopillars. The surface energy can be precisely controlled through the selective removal of an adsorbed self‐assembled monolayer of low surface‐energy molecules prepared on the plasmonic nanopillars. This process can be used to tune the surface energy and provide a superhydrophobic surface with a water contact angle of 165.8° on the one hand or a hydrophilic surface with a water contact angle of 40.0° on the other. The highly tunable surface wettability is employed to systematically investigate the effects of the surface energy on the capillary‐force‐induced clustering among the HAR plasmonic nanopillars as well as on molecular concentration at the collapsed nanogaps present at the tops of the clustered nanopillars.

中文翻译:

表面能控制的SERS基质在等离子纳米间隙处的分子浓度

需要将探针分子以纳米精度定位在电磁热点上,以实现高度灵敏且可重现的表面增强拉曼光谱(SERS)分析。在本文中,使用高纵横比(HAR)的等离子纳米柱阵列和受控的表面能报告了等离子纳米间隙处的分子定位。使用无纳米光刻技术的简单过程生成了大面积的HAR等离子体纳米柱阵列,该过程包括将Ar等离子处理应用于光滑的聚合物表面,然后将金属蒸发到聚合物纳米柱上。通过选择性去除在等离激元纳米柱上制备的低表面能分子的吸附自组装单层,可以精确控制表面能。此过程可用于调整表面能,一方面提供超疏水性表面的水接触角为165.8°,另一方面提供亲水性表面的水接触角为40.0°。高度可调节的表面润湿性用于系统研究表面能对毛细作用力诱导的HAR等离子体纳米柱之间的聚集以及聚集纳米柱顶部存在的塌陷纳米间隙中分子浓度的影响。
更新日期:2017-09-06
down
wechat
bug