当前位置: X-MOL 学术J. Control. Release › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Light-switchable systems for remotely controlled drug delivery
Journal of Controlled Release ( IF 10.5 ) Pub Date : 2017-09-06 , DOI: 10.1016/j.jconrel.2017.09.009
Gayong Shim , Seungbeom Ko , Dongyoon Kim , Quoc-Viet Le , Gyu Thae Park , Jaiwoo Lee , Taekhyun Kwon , Han-Gon Choi , Young Bong Kim , Yu-Kyoung Oh

Light-switchable systems have recently received attention as a new mode of remotely controlled drug delivery. In the past, a multitude of nanomedicine studies have sought to enhance the specificity of drug delivery to target sites by focusing on receptors overexpressed on malignant cells or environmental features of diseases sites. Despite these immense efforts, however, there are few clinically available nanomedicines. We need a paradigm shift in drug delivery. One strategy that may overcome the limitations of pathophysiology-based drug delivery is the use of remotely controlled delivery technology. Unlike pathophysiology-based active drug targeting strategies, light-switchable systems are not affected by the heterogeneity of cells, tissue types, and/or microenvironments. Instead, they are triggered by remote light (i.e., near-infrared) stimuli, which are absorbed by photoresponsive molecules or three-dimensional nanostructures. The sequential conversion of light to heat or reactive oxygen species can activate drug release and allow it to be spatio-temporally controlled. Light-switchable systems have been used to activate endosomal drug escape, modulate the release of chemical and biological drugs, and alter nanoparticle structures to control the release rates of drugs. This review will address the limitations of pathophysiology-based drug delivery systems, the current status of light-based remote-switch systems, and future directions in the application of light-switchable systems for remotely controlled drug delivery.



中文翻译:

用于远程控制药物输送的光开关系统

作为远程控制药物输送的新模式,光开关系统最近已受到关注。过去,大量的纳米医学研究试图通过集中于在恶性细胞上过表达的受体或疾病部位的环境特征来增强向靶部位的药物输送的特异性。尽管进行了这些巨大的努力,但是,临床上可用的纳米药物很少。我们需要在药物输送方面进行范式转变。可以克服基于病理生理学的药物输送的局限性的一种策略是使用远程控制的输送技术。与基于病理生理学的活性药物靶向策略不同,光可切换系统不受细胞,组织类型和/或微环境异质性的影响。相反,它们是由远程光(即近红外)刺激触发的,被光敏分子或三维纳米结构吸收的分子。光到热或活性氧的顺序转换可以激活药物释放,并使其在时空上受到控制。光开关系统已用于激活内体药物逸出,调节化学和生物药物的释放以及改变纳米颗粒结构以控制药物的释放速率。这项审查将解决基于病理生理学的药物输送系统的局限性,基于光的远程开关系统的当前状态,以及在将光开关系统应用于远程控制的药物输送中的未来发展方向。光到热或活性氧的顺序转换可以激活药物释放,并使其在时空上受到控制。光开关系统已用于激活内体药物逸出,调节化学和生物药物的释放以及改变纳米颗粒结构以控制药物的释放速率。这项审查将解决基于病理生理学的药物输送系统的局限性,基于光的远程开关系统的当前状态,以及在将光开关系统应用于远程控制的药物输送中的未来发展方向。从光到热或活性氧的顺序转换可以激活药物释放,并使其在时空上受到控制。光开关系统已用于激活内体药物逸出,调节化学和生物药物的释放以及改变纳米颗粒结构以控制药物的释放速率。这项审查将解决基于病理生理学的药物输送系统的局限性,基于光的远程开关系统的当前状态,以及在将光开关系统应用于远程控制的药物输送中的未来发展方向。

更新日期:2017-09-06
down
wechat
bug