当前位置: X-MOL 学术Trends Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cellular Computations Underlying Detection of Gaps in Sounds and Lateralizing Sound Sources
Trends in Neurosciences ( IF 14.6 ) Pub Date : 2017-10-01 , DOI: 10.1016/j.tins.2017.08.001
Donata Oertel , Xiao-Jie Cao , James R. Ison , Paul D. Allen

In mammals, acoustic information arises in the cochlea and is transmitted to the ventral cochlear nuclei (VCN). Three groups of VCN neurons extract different features from the firing of auditory nerve fibers and convey that information along separate pathways through the brainstem. Two of these pathways process temporal information: octopus cells detect coincident firing among auditory nerve fibers and transmit signals along monaural pathways, and bushy cells sharpen the encoding of fine structure and feed binaural pathways. The ability of these cells to signal with temporal precision depends on a low-voltage-activated K+ conductance (gKL) and a hyperpolarization-activated conductance (gh). This 'tale of two conductances' traces gap detection and sound lateralization to their cellular and biophysical origins.

中文翻译:

用于检测声音中的间隙和使声源横向化的细胞计算

在哺乳动物中,声学信息在耳蜗中产生并传输到腹侧耳蜗核 (VCN)。三组 VCN 神经元从听觉神经纤维的放电中提取不同的特征,并沿着不同的通路通过脑干传递这些信息。其中两条通路处理时间信息:章鱼细胞检测听觉神经纤维之间的同时放电并沿单耳通路传输信号,而浓密细胞则锐化精细结构的编码和馈送双耳通路。这些细胞以时间精度发出信号的能力取决于低电压激活的 K+ 电导 (gKL) 和超极化激活的电导 (gh)。这个“两个电导的故事”追踪了间隙检测和声音偏侧化到它们的细胞和生物物理起源。
更新日期:2017-10-01
down
wechat
bug