当前位置: X-MOL 学术Prog. Retin. Eye. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The lens growth process
Progress in Retinal and Eye Research ( IF 18.6 ) Pub Date : 2017-04-11 , DOI: 10.1016/j.preteyeres.2017.04.001
Steven Bassnett , Hrvoje Šikić

The factors that regulate the size of organs to ensure that they fit within an organism are not well understood. A simple organ, the ocular lens serves as a useful model with which to tackle this problem. In many systems, considerable variance in the organ growth process is tolerable. This is almost certainly not the case in the lens, which in addition to fitting comfortably within the eyeball, must also be of the correct size and shape to focus light sharply onto the retina. Furthermore, the lens does not perform its optical function in isolation. Its growth, which continues throughout life, must therefore be coordinated with that of other tissues in the optical train. Here, we review the lens growth process in detail, from pioneering clinical investigations in the late nineteenth century to insights gleaned more recently in the course of cell and molecular studies. During embryonic development, the lens forms from an invagination of surface ectoderm. Consequently, the progenitor cell population is located at its surface and differentiated cells are confined to the interior. The interactions that regulate cell fate thus occur within the obligate ellipsoidal geometry of the lens. In this context, mathematical models are particularly appropriate tools with which to examine the growth process. In addition to identifying key growth determinants, such models constitute a framework for integrating cell biological and optical data, helping clarify the relationship between gene expression in the lens and image quality at the retinal plane.



中文翻译:

晶状体生长过程

调节器官大小以确保它们适合生物体的因素尚未得到很好的理解。眼镜是一种简单的器官,可作为解决此问题的有用模型。在许多系统中,器官生长过程中的显着差异是可以容忍的。晶状体几乎不是这种情况,晶状体除了可以舒适地安装在眼球内之外,还必须具有正确的尺寸和形状,以将光锐利地聚焦在视网膜上。此外,镜头不能单独执行其光学功能。因此,在整个生命周期中持续增长的其生长必须与光学系统中其他组织的生长协调。在这里,我们详细介绍晶状体的生长过程,从19世纪后期的开创性临床研究到最近在细胞和分子研究过程中获得的见解。在胚胎发育过程中,晶状体由表面外胚层的内陷形成。因此,祖细胞群位于其表面,分化的细胞被限制在内部。因此,调节细胞命运的相互作用发生在晶状体的椭圆形几何体中。在这种情况下,数学模型是检查增长过程的特别合适的工具。除了确定关键的生长决定因素外,此类模型还构成了整合细胞生物学和光学数据的框架,有助于阐明晶状体中基因表达与视网膜平面图像质量之间的关系。在胚胎发育过程中,晶状体由表面外胚层的内陷形成。因此,祖细胞群位于其表面,分化的细胞被限制在内部。因此,调节细胞命运的相互作用发生在晶状体的椭圆形几何体中。在这种情况下,数学模型是检查增长过程的特别合适的工具。除了确定关键的生长决定因素外,此类模型还构成了整合细胞生物学和光学数据的框架,有助于阐明晶状体中基因表达与视网膜平面图像质量之间的关系。在胚胎发育过程中,晶状体由表面外胚层的内陷形成。因此,祖细胞群位于其表面,分化的细胞被限制在内部。因此,调节细胞命运的相互作用发生在晶状体的椭圆形几何体中。在这种情况下,数学模型是检查增长过程的特别合适的工具。除了确定关键的生长决定因素外,此类模型还构成了整合细胞生物学和光学数据的框架,有助于阐明晶状体中基因表达与视网膜平面图像质量之间的关系。祖细胞群位于其表面,分化的细胞被限制在内部。因此,调节细胞命运的相互作用发生在晶状体的椭圆形几何体之内。在这种情况下,数学模型是检查增长过程的特别合适的工具。除了确定关键的生长决定因素外,此类模型还构成了整合细胞生物学和光学数据的框架,有助于阐明晶状体中基因表达与视网膜平面图像质量之间的关系。祖细胞群位于其表面,分化的细胞被限制在内部。因此,调节细胞命运的相互作用发生在晶状体的椭圆形几何体中。在这种情况下,数学模型是检查增长过程的特别合适的工具。除了确定关键的生长决定因素外,此类模型还构成了整合细胞生物学和光学数据的框架,有助于阐明晶状体中基因表达与视网膜平面图像质量之间的关系。

更新日期:2017-04-11
down
wechat
bug