当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiscale modeling of the anisotropic electrical conductivity of architectured and nanostructured Cu-Nb composite wires and experimental comparison
Acta Materialia ( IF 9.4 ) Pub Date : 2017-12-01 , DOI: 10.1016/j.actamat.2017.08.066
T. Gu , J.-R. Medy , F. Volpi , O. Castelnau , S. Forest , E. Hervé-Luanco , F. Lecouturier , H. Proudhon , P.-O. Renault , L. Thilly

Nanostructured and architectured copper niobium composite wires are excellent candidates for the generation of intense pulsed magnetic fields (> 90T) as they combine both high electrical conductivity and high strength. Multi-scaled Cu-Nb wires can be fabricated by accumulative drawing and bundling (a severe plastic deformation technique), leading to a multiscale, architectured and nanostructured microstructure providing a unique set of properties. This work presents a comprehensive multiscale study to predict the anisotropic effective electrical conductivity based on material nanostructure and architecture. Two homogenization methods are applied: a mean-field theory and a full-field approach. The size effect associated with the microstructure refinement is taken into account in the definition of the conductivity of each component in the composites. The multiscale character of the material is then accounted for through an iterative process. Both methods show excellent agreement with each other. The results are further compared, for the first time, with experimental data obtained by the four-point probe technique, and also show excellent agreement. Finally, the qualitative and quantitative understanding provided by these models demonstrates that the microstructure of Cu-Nb wires has a significant effect on the electrical conductivity

中文翻译:

结构化和纳米结构化 Cu-Nb 复合线的各向异性电导率的多尺度建模和实验比较

纳米结构和结构的铜铌复合线是产生强脉冲磁场 (> 90T) 的绝佳候选材料,因为它们兼具高导电性和高强度。多尺度 Cu-Nb 线可以通过累积拉伸和捆绑(一种严重的塑性变形技术)制造,从而形成多尺度、结构化和纳米结构的微观结构,提供一组独特的性能。这项工作提出了一项全面的多尺度研究,以预测基于材料纳米结构和结构的各向异性有效电导率。应用了两种均匀化方法:平均场理论和全场方法。在定义复合材料中每个组分的电导率时考虑了与微观结构细化相关的尺寸效应。然后通过迭代过程考虑材料的多尺度特征。两种方法都表现出极好的一致性。首次将结果与通过四点探针技术获得的实验数据进行了进一步比较,也显示出极好的一致性。最后,这些模型提供的定性和定量理解表明,Cu-Nb 线的微观结构对导电性有显着影响。与通过四点探针技术获得的实验数据,也显示出极好的一致性。最后,这些模型提供的定性和定量理解表明,Cu-Nb 线的微观结构对导电性有显着影响。与四点探针技术获得的实验数据,也显示出极好的一致性。最后,这些模型提供的定性和定量理解表明,Cu-Nb 线的微观结构对导电性有显着影响。
更新日期:2017-12-01
down
wechat
bug