当前位置: X-MOL 学术Macromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamics of Shape-Persistent Giant Molecules: Zimm-like Melt, Elastic Plateau, and Cooperative Glass-like
Macromolecules ( IF 5.5 ) Pub Date : 2017-08-31 00:00:00 , DOI: 10.1021/acs.macromol.7b01058
GengXin Liu 1 , Xueyan Feng 1 , Kening Lang 1 , Ruimeng Zhang 1 , Dong Guo 1 , Shuguang Yang 2 , Stephen Z. D. Cheng 1
Affiliation  

Giant molecules are a new class of soft matter having three-dimensional (3D) shapes and composed of chemically linked rigid molecular nanoparticles. Structurally, a 3D cluster of molecular nanoparticles can be one giant molecule or a few giant molecules associated together via specific interactions. The dynamics of clusters that are smaller than a critical diameter (∼5 nm) presents a power law relaxation exponent of 0.7 at the high frequency region corresponding to segmental dynamics. Such scaling is similar to the result of the Zimm model although those clusters are neither chain-like nor in solution. Clusters that are larger than this critical diameter and formed by the association of giant molecules exhibit an elastic plateau due to caging of individual giant molecules. We hypothesize that clusters of such a large size cannot move as a whole, even above the glass transition temperature of the sample. They thus are “cooperative glass-like”. A structural cluster of giant molecules could be abstracted as a dynamical cluster consisting of unlinked but cooperatively mobile beads. As derived in the random first-order transition theory, the cluster loses its mobility and reaches the glassy state when the diameter of the cluster is 6 times larger than the bead diameter. In our cases, we estimate that the critical diameter for these clusters is also approximately 6 times the bead diameter based on the glassy shear modulus of giant molecules. Thus, shape-persistent giant molecules may serve as a bridge between polymers and colloids and a platform to mimic cooperative rearrangements.

中文翻译:

形状持久性大分子的动力学:类Zimm熔体,弹性高原和协同玻璃类

巨型分子是一类具有三维(3D)形状的新型软物质,由化学连接的刚性分子纳米颗粒组成。从结构上讲,分子纳米粒子的3D簇可以是一个大分子,也可以是通过特定相互作用关联在一起的几个大分子。小于临界直径(〜5 nm)的簇的动力学在对应于分段动力学的高频区域呈现出0.7的幂律松弛指数。这种缩放类似于Zimm模型的结果,尽管这些簇既不是链状的,也不是在解中。大于此临界直径并由巨分子缔合而形成的簇由于单个巨分子的笼罩而呈现出弹性平台。我们假设如此大的簇不能整体移动,甚至高于样品的玻璃化转变温度。因此,它们是“类似协作的玻璃”。巨型分子的结构簇可以抽象为一个动态簇,该动力学簇由未链接但可协同移动的珠子组成。如随机一阶跃迁理论所推导的,当团簇的直径比胎圈直径大6倍时,团簇失去其迁移性并达到玻璃态。在我们的案例中,基于巨分子的玻璃态剪切模量,我们估计这些簇的临界直径也大约是珠子直径的6倍。因此,形状持久的大分子可以充当聚合物和胶体之间的桥梁和模仿协同重排的平台。巨型分子的结构簇可以抽象为一个动态簇,该动力学簇由未链接但可协同移动的珠子组成。如随机一阶跃迁理论所推导的,当团簇的直径比胎圈直径大6倍时,团簇失去其迁移性并达到玻璃态。在我们的案例中,基于巨分子的玻璃态剪切模量,我们估计这些簇的临界直径也大约是珠子直径的6倍。因此,形状持久的大分子可以充当聚合物和胶体之间的桥梁和模仿协同重排的平台。巨型分子的结构簇可以抽象为一个动态簇,该动力学簇由未链接但可协同移动的珠子组成。如随机一阶跃迁理论所推导的,当团簇的直径比胎圈直径大6倍时,团簇失去其迁移性并达到玻璃态。在我们的案例中,基于巨分子的玻璃态剪切模量,我们估计这些簇的临界直径也大约是珠子直径的6倍。因此,形状持久的大分子可以充当聚合物和胶体之间的桥梁和模仿协同重排的平台。当团簇的直径是珠直径的6倍时,团簇失去其流动性并达到玻璃态。在我们的案例中,基于巨分子的玻璃态剪切模量,我们估计这些簇的临界直径也大约是珠子直径的6倍。因此,形状持久的大分子可以充当聚合物和胶体之间的桥梁和模仿协同重排的平台。当团簇的直径是珠直径的6倍时,团簇失去其流动性并达到玻璃态。在我们的案例中,基于巨分子的玻璃态剪切模量,我们估计这些簇的临界直径也大约是珠子直径的6倍。因此,形状持久的大分子可以充当聚合物和胶体之间的桥梁和模仿协同重排的平台。
更新日期:2017-08-31
down
wechat
bug