当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Reversible Sodium‐Ion Intercalation by Synergistic Coupling of Few‐Layered MoS2 and S‐Doped Graphene
Advanced Functional Materials ( IF 19.0 ) Pub Date : 2017-09-04 , DOI: 10.1002/adfm.201702562
Ge Li 1 , Dan Luo 1 , Xiaolei Wang 1, 2 , Min Ho Seo 1, 3 , Sahar Hemmati 1 , Aiping Yu 1 , Zhongwei Chen 1
Affiliation  

Sodium‐ion batteries (SIBs) are regarded as the best alternative to lithium‐ion batteries due to their low cost and similar Na+ insertion chemistry. It is still challenging but greatly desired to design and develop novel electrode materials with high reversible capacity, long cycling life, and good rate capability toward high‐performance SIBs. This work demonstrates an innovative design strategy and a development of few‐layered molybdenum disulfide/sulfur‐doped graphene nanosheets (MoS2/SG) composites as the SIB anode material providing a high specific capacity of 587 mA h g−1 calculated based on the total composite mass and an extremely long cycling stability over 1000 cycles at a current density of 1.0 A g−1 with a high capacity retention of ≈85%. Systematic characterizations reveal that the outstanding performance is mainly attributed to the unique and robust composite architecture where few‐layered MoS2 and S‐doped graphene are intimately bridged at the hetero‐interface through a synergistic coupling effect via the covalently doped S atoms. The design strategy and mechanism understanding at the molecular level outlined here can be readily applied to other layered transition metal oxides for SIBs anode and play a key role in contributing to the development of high‐performance SIBs.

中文翻译:

少量MoS2和S掺杂石墨烯的协同偶联增强了可逆的钠离子嵌入

钠离子电池(SIB)由于其低成本和类似的Na +插入化学性质,被认为是锂离子电池的最佳替代品。仍然具有挑战性,但迫切需要设计和开发新型电极材料,该材料具有高可逆容量,较长的循环寿命以及对高性能SIB具有良好的倍率性能。这项工作展示了一种创新的设计策略以及作为SIB阳极材料的几层二硫化钼/硫掺杂石墨烯纳米片(MoS 2 / SG)复合材料的开发,该材料提供了基于总总容量的587 mA hg -1的高比容量。复合材料,电流密度为1.0 A g -1时,在1000次循环中具有极长的循环稳定性具有≈85%的高容量保持率。系统表征表明,出色的性能主要归因于独特而强大的复合体系结构,其中通过共价掺杂的S原子通过协同耦合效应,在异质界面上紧密连接了很少层的MoS 2和S掺杂的石墨烯。本文概述的分子水平上的设计策略和机理理解可以轻松地应用于SIB阳极的其他层状过渡金属氧化物,并在促进高性能SIB的发展中发挥关键作用。
更新日期:2017-09-04
down
wechat
bug