当前位置: X-MOL 学术Biomacromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shear Effects on Stability of DNA Complexes in the Presence of Serum
Biomacromolecules ( IF 5.5 ) Pub Date : 2017-09-01 00:00:00 , DOI: 10.1021/acs.biomac.7b00900
Hao Wen 1 , Qiuhong Yu 1 , Yudan Yin 1 , Wei Pan 1 , Shuang Yang 1 , Dehai Liang 1
Affiliation  

The behavior of nanocarriers, even though they are well-defined at equilibrium conditions, is unpredictable in living system. Using the complexes formed by plasmid DNA (pDNA) and K20 (K: lysine), protamine, or polylysine (PLL) as models, we studied the dynamic behavior of gene carriers in the presence of fetal bovine serum (FBS) and under different shear rates, a condition mimicking the internal physical environment of blood vessels. Without shear, all the positively charged complexes bind to the negatively charged proteins in FBS, leading to the formation of large aggregates and even precipitates. The behaviors are quite different under shear. The shear generates two effects: a mechanical force to break down the complex into smaller size particles above a critical shear rate and a stirring effect leading to secondary aggregation of complexes below the critical shear rate. In the studied shear rate from 100 to 3000 s–1, the mechanical force plays a key role in K20/pDNA and protamine/pDNA, while the stirring effect is dominant in PLL/pDNA. A model study shows that the interfacial tension, the chain density, and the elasticity of the complexes determine their responsiveness to shear force. This study is helpful to understand the fate of drug/gene carriers under physiological conditions. It also gains insight in designing drug/gene carriers with desirable properties for in vivo applications.

中文翻译:

血清对DNA复合物稳定性的剪切作用

纳米载体的行为,即使它们在平衡条件下是明确定义的,在生命系统中也是无法预测的。使用质粒DNA(pDNA)和K 20形成的复合物(K:赖氨酸),鱼精蛋白或聚赖氨酸(PLL)作为模型,我们研究了胎牛血清(FBS)存在和不同剪切速率下(模拟血管内部物理环境的条件)基因载体的动态行为。在没有剪切的情况下,所有带正电的复合物都与FBS中的带负电的蛋白质结合,导致形成大的聚集体甚至沉淀。在剪切作用下的行为是完全不同的。剪切产生两个作用:在临界剪切速率以上将复合物分解成较小尺寸的颗粒的机械力和在临界剪切速率以下导致复合物的二次聚集的搅拌作用。在从100到3000 s –1的剪切速率下,机械力在K 20中起关键作用/ pDNA和鱼精蛋白/ pDNA,而搅拌作用在PLL / pDNA中占主导地位。模型研究表明,界面张力,链密度和复合物的弹性决定了它们对剪切力的响应能力。这项研究有助于了解生理条件下药物/基因携带者的命运。它还在设计具有体内应用所需特性的药物/基因载体方面获得了见识。
更新日期:2017-09-04
down
wechat
bug