当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nitrogen-Doped Three-Dimensional Graphene-Supported Palladium Nanocomposites: High-Performance Cathode Catalysts for Oxygen Reduction Reactions
ACS Catalysis ( IF 11.3 ) Pub Date : 2017-09-01 00:00:00 , DOI: 10.1021/acscatal.7b02071
Sadia Kabir 1 , Alexey Serov 1 , Kateryna Artyushkova 1 , Plamen Atanassov 1
Affiliation  

This study reports an effective strategy for fabricating three-dimensional nitrogen-doped graphene supports for palladium nanoparticles (Pd–N/3D-GNS) and studying the electrochemical activity of the synthesized nanocomposites toward oxygen electroreduction in alkaline media as well as implementing the nanocomposite as cathode catalysts in anion exchange membrane fuel cells (AEMFC). It was demonstrated that by embedding and etching an amorphous sacrificial silica template into the reduced graphene matrix, the as-prepared nanocomposites pyrolyzed into hierarchically porous 3D-nanosheets composed of interconnected nitrogen-doped graphene nanostacks, which was confirmed using transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Palladium nanoparticles were then deposited on the N/3D-GNS supports using a surfactant-free technique and characterized using various surface analysis and potentiodynamic techniques. By analyzing the linear sweep voltammograms obtained from rotating ring disc electrodes, it was demonstrated that the Pd–N/3D-Graphene nanocomposites efficiently catalyzed the four-electron reduction of oxygen, with onset potentials closer to theoretical values and negligible peroxide yields. The nanocomposites were then integrated into a catalyst-coated membrane and tested in H2/O2 fed AEMFC. Owing to its unique morphological features and the desirable chemical composition, the Pd/3D-GNS catalysts exhibited much enhanced performance as cathode materials for AEMFCs. The enhanced electrochemical kinetics and high current/power densities of up to 250 mW cm–2 obtained from the cathodes materials described in this study will lead to further advancements in AEMFC technology.

中文翻译:

氮掺杂的三维石墨烯负载钯纳米复合材料:用于氧还原反应的高性能阴极催化剂

这项研究报告了一种用于制造钯纳米颗粒(Pd–N / 3D-GNS)的三维氮掺杂石墨烯载体的有效策略,并研究了合成的纳米复合材料在碱性介质中对氧电还原的电化学活性,以及​​将纳米复合材料用作碳纳米管。阴离子交换膜燃料电池(AEMFC)中的阴极催化剂。结果表明,通过将无定形的牺牲二氧化硅模板嵌入并蚀刻到还原的石墨烯基体中,将制得的纳米复合材料热解成由互连的氮掺杂石墨烯纳米堆叠体组成的分层多孔3D纳米片,这通过透射电子显微镜,扫描电子得到了证实。显微镜和X射线光电子能谱。然后使用无表面活性剂技术将钯纳米颗粒沉积在N / 3D-GNS载体上,并使用各种表面分析和电位动力学技术对其进行表征。通过分析从旋转环形圆盘电极获得的线性扫描伏安图,可以证明Pd–N / 3D石墨烯纳米复合材料有效催化了氧的四电子还原,起始电势接近理论值,而过氧化物的收率可忽略不计。然后将纳米复合材料整合到涂有催化剂的膜中并在H中进行测试 结果表明,Pd–N / 3D石墨烯纳米复合材料有效催化了氧的四电子还原,其起始电势接近理论值,而过氧化物的收率可忽略不计。然后将纳米复合材料整合到涂有催化剂的膜中并在H中进行测试 结果表明,Pd–N / 3D石墨烯纳米复合材料有效催化了氧的四电子还原,其起始电势接近理论值,而过氧化物的收率可忽略不计。然后将纳米复合材料整合到涂有催化剂的膜中并在H中进行测试2 / O 2送入AEMFC。由于其独特的形态特征和理想的化学组成,Pd / 3D-GNS催化剂作为AEMFC的阴极材料表现出大大增强的性能。从这项研究中描述的阴极材料获得的增强的电化学动力学和高达250 mW cm -2的高电流/功率密度,将导致AEMFC技术的进一步发展。
更新日期:2017-09-04
down
wechat
bug