当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2017-09-01 , DOI: 10.1002/aenm.201701561
Nicola Gasparini 1 , Michael Salvador 1, 2 , Thomas Heumueller 1 , Moses Richter 1 , Andrej Classen 1 , Shreetu Shrestha 1 , Gebhard J. Matt 1 , Sarah Holliday 3 , Sebastian Strohm 1, 4 , Hans-Joachim Egelhaaf 4 , Andrew Wadsworth 3 , Derya Baran 3, 5 , Iain McCulloch 3, 5 , Christoph J. Brabec 1, 4
Affiliation  

Organic semiconductors are in general known to have an inherently lower charge carrier mobility compared to their inorganic counterparts. Bimolecular recombination of holes and electrons is an important loss mechanism and can often be described by the Langevin recombination model. Here, the device physics of bulk heterojunction solar cells based on a nonfullerene acceptor (IDTBR) in combination with poly(3‐hexylthiophene) (P3HT) are elucidated, showing an unprecedentedly low bimolecular recombination rate. The high fill factor observed (above 65%) is attributed to non‐Langevin behavior with a Langevin prefactor (β/βL) of 1.9 × 10−4. The absence of parasitic recombination and high charge carrier lifetimes in P3HT:IDTBR solar cells inform an almost ideal bimolecular recombination behavior. This exceptional recombination behavior is explored to fabricate devices with layer thicknesses up to 450 nm without significant performance losses. The determination of the photoexcited carrier mobility by time‐of‐flight measurements reveals a long‐lived and nonthermalized carrier transport as the origin for the exceptional transport physics. The crystalline microstructure arrangement of both components is suggested to be decisive for this slow recombination dynamics. Further, the thickness‐independent power conversion efficiency is of utmost technological relevance for upscaling production and reiterates the importance of understanding material design in the context of low bimolecular recombination.

中文翻译:

具有极低复合速率的非富勒烯大体积异质结太阳能电池

通常已知有机半导体与其无机对应物相比固有地具有较低的载流子迁移率。空穴和电子的双分子重组是一种重要的损耗机理,通常可以用Langevin重组模型来描述。在这里,阐明了基于非富勒烯受体(IDTBR)与聚(3-己基噻吩)(P3HT)结合的本体异质结太阳能电池的器件物理特性,显示出前所未有的低双分子复合率。高填充因子观察到归因于非郎之万行为具有朗之万前因子(β/β(65%以上)大号的1.9×10)-4。P3HT:IDTBR太阳能电池中没有寄生重组和高电荷载流子寿命,这说明了几乎理想的双分子重组行为。探索了这种异常的复合行为,以制造厚度高达450 nm的器件,而不会造成明显的性能损失。通过飞行时间测量确定光激发载流子迁移率表明,长期存在且未受热的载流子运输是卓越运输物理学的起源。两种组分的晶体微观结构排列被认为对于这种缓慢的重组动力学是决定性的。进一步,
更新日期:2017-09-01
down
wechat
bug