当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing
Advanced Materials ( IF 29.4 ) Pub Date : 2017-09-04 , DOI: 10.1002/adma.201702800
Dianpeng Qi 1 , Zhiyuan Liu 1 , Yan Liu 1 , Ying Jiang 1 , Wan Ru Leow 1 , Mayank Pal 1 , Shaowu Pan 1 , Hui Yang 1 , Yu Wang 1 , Xiaoqian Zhang 1 , Jiancan Yu 1 , Bin Li 1 , Zhe Yu 2 , Wei Wang 3 , Xiaodong Chen 1
Affiliation  

Polymeric microelectrode arrays (MEAs) are emerging as a new generation of biointegrated microelectrodes to transduce original electrochemical signals in living tissues to external electrical circuits, and vice versa. So far, the challenge of stretchable polymeric MEAs lies in the competition between high stretchability and good electrode–substrate adhesion. The larger the stretchability, the easier the delamination of electrodes from the substrate due to the mismatch in their Young's modulus. In this work, polypyrrole (PPy) electrode materials are designed, with PPy nanowires integrated on the high conductive PPy electrode arrays. By utilizing this electrode material, for the first time, stretchable polymeric MEAs are fabricated with both high stretchability (≈100%) and good electrode–substrate adhesion (1.9 MPa). In addition, low Young's modulus (450 kPa), excellent recycling stability (10 000 cycles of stretch), and high conductivity of the MEAs are also achieved. As a proof of concept, the as‐prepared polymeric MEAs are successfully used for conformally recording the electrocorticograph signals from rats in normal and epileptic states, respectively. Further, these polymeric MEAs are also successful in stimulating the ischiadic nerve of the rat. This strategy provides a new perspective to the highly stretchable and mechanically stable polymeric MEAs, which are vital for compliant neural electrodes.

中文翻译:

用于体内电生理接口的高度可拉伸,顺应性聚合物微电极阵列

高分子微电极阵列(MEAs)作为新一代的生物集成微电极而出现,可将活组织中的原始电化学信号转导至外部电路,反之亦然。到目前为止,可拉伸聚合物MEA的挑战在于高拉伸性和良好的电极-基底附着力之间的竞争。拉伸性越大,由于电极的杨氏模量不匹配,电极越容易从基板上剥离。在这项工作中,设计了聚吡咯(PPy)电极材料,并在高导电PPy电极阵列上集成了PPy纳米线。通过利用这种电极材料,首次制造了具有高拉伸性(≈100%)和良好的电极-基底附着力(1.9 MPa)的可拉伸聚合物MEA。另外,低杨氏 s模量(450 kPa),优异的循环稳定性(10000次拉伸循环)以及MEA的高电导率也得以实现。作为概念的证明,所制备的聚合物MEA已成功地分别用于分别正常记录和处于癫痫状态的大鼠的皮层电记录仪的保形记录信号。此外,这些聚合物MEAs也成功地刺激了大鼠的坐骨神经。该策略为高度可拉伸且机械稳定的聚合物MEA提供了新的视角,这对于顺应性神经电极至关重要。所制备的聚合物MEA成功地分别用于分别正常记录和癫痫状态下大鼠的皮层电记录仪的保形记录。此外,这些聚合物MEAs也成功地刺激了大鼠的坐骨神经。该策略为高度可拉伸且机械稳定的聚合物MEA提供了新的视角,这对于顺应性神经电极至关重要。所制备的聚合物MEA成功地分别用于分别正常记录和癫痫状态下大鼠的皮层电记录仪的保形记录。此外,这些聚合物MEAs也成功地刺激了大鼠的坐骨神经。该策略为高度可拉伸且机械稳定的聚合物MEA提供了新的视角,这对于顺应性神经电极至关重要。
更新日期:2017-09-04
down
wechat
bug