当前位置: X-MOL 学术Inorg. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
New molecular insights into the stability of Ni–Pd hollow nanoparticles
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2017-08-17 00:00:00 , DOI: 10.1039/c7qi00370f
Hamed Akbarzadeh 1, 2, 3, 4, 5 , Esmat Mehrjouei 1, 2, 3, 4, 5 , Amir Nasser Shamkhali 1, 5, 6, 7, 8 , Mohsen Abbaspour 1, 2, 3, 4, 5 , Sirous Salemi 1, 2, 3, 4, 5 , Samira Ramezanzadeh 1, 2, 3, 4, 5
Affiliation  

In this study, the thermal behaviors of pure Ni and Pd as well as Ni@Pd, and Pd@Ni hollow nanoclusters were investigated by MD simulations. The Ni@Pd hollow nanoclusters exhibited more thermodynamic stability and a higher melting point than the Pd@Ni ones. This result is opposite to the trend demonstrated by the corresponding bulk materials, which could be related to the effect of the hollow core. Due to the small difference between the melting points of bulk Pd and Ni, a two-step melting behavior was not observed for the hollow Pd–Ni nanoclusters. The differences between the thermodynamic stabilities of the simulated nanoclusters were related to the concentration of Pd atoms in the shell and Ni atoms in the core regions due to the lower surface energy of Pd atoms and the higher cohesive and binding energy of Ni atoms. Also, a larger nanocluster size led to a faster diffusion of Pd atoms toward the shell of the nanocluster. Moreover, the diffusion of Pd atoms to the surface and Ni atoms to the core region for Pd@Ni nanoclusters near the melting point and the increase in the ordered atoms under these circumstances led to a higher melting point of this nanocluster in comparison with the Ni@Pd nanoclusters. These results indicate the potential for the future construction of nanocatalysts based on bimetallic nanoclusters with core–shell hollow structures.

中文翻译:

Ni-Pd空心纳米粒子稳定性的新分子洞察

在这项研究中,通过MD模拟研究了纯Ni和Pd以及Ni @ Pd和Pd @ Ni中空纳米团簇的热行为。Ni @ Pd中空纳米团簇比Pd @ Ni团簇具有更高的热力学稳定性和更高的熔点。该结果与相应的散装材料所显示的趋势相反,该趋势可能与中空芯的作用有关。由于块状Pd和Ni的熔点之间的微小差异,中空的Pd-Ni纳米团簇没有观察到两步熔化行为。模拟的纳米团簇的热力学稳定性之间的差异与壳中Pd原子的浓度和核心区域中Ni原子的浓度有关,这是由于Pd原子的表面能较低,而Ni原子的内聚能和结合能较高。还,较大的纳米团簇尺寸导致Pd原子向纳米团簇的壳更快扩散。此外,Pd @ Ni纳米团簇的熔点附近,Pd原子扩散到表面,Ni原子扩散到核心区域,在这种情况下,有序原子的增加导致与Ni相比,该纳米团簇的熔点更高@Pd nanoclusters。这些结果表明,未来基于具有核-壳中空结构的双金属纳米团簇构建纳米催化剂的潜力。Pd @ Ni纳米团簇的熔点附近,Pd原子向表面扩散,Ni原子向核心区域扩散,在这种情况下,有序原子的增加导致该纳米团簇的熔点高于Ni @ Pd纳米团簇。这些结果表明,未来基于具有核-壳中空结构的双金属纳米团簇构建纳米催化剂的潜力。Pd @ Ni纳米团簇的熔点附近,Pd原子向表面扩散,Ni原子向核心区域扩散,在这种情况下,有序原子的增加导致该纳米团簇的熔点高于Ni @ Pd纳米团簇。这些结果表明,未来基于具有核-壳中空结构的双金属纳米团簇构建纳米催化剂的潜力。
更新日期:2017-08-29
down
wechat
bug