当前位置: X-MOL 学术Nat. Rev. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computationally guided discovery of thermoelectric materials
Nature Reviews Materials ( IF 79.8 ) Pub Date : 2017-08-22 , DOI: 10.1038/natrevmats.2017.53
Prashun Gorai , Vladan Stevanović , Eric S. Toberer

The potential for advances in thermoelectric materials, and thus solid-state refrigeration and power generation, is immense. Progress so far has been limited by both the breadth and diversity of the chemical space and the serial nature of experimental work. In this Review, we discuss how recent computational advances are revolutionizing our ability to predict electron and phonon transport and scattering, as well as materials dopability, and we examine efficient approaches to calculating critical transport properties across large chemical spaces. When coupled with experimental feedback, these high-throughput approaches can stimulate the discovery of new classes of thermoelectric materials. Within smaller materials subsets, computations can guide the optimal chemical and structural tailoring to enhance materials performance and provide insight into the underlying transport physics. Beyond perfect materials, computations can be used for the rational design of structural and chemical modifications (such as defects, interfaces, dopants and alloys) to provide additional control on transport properties to optimize performance. Through computational predictions for both materials searches and design, a new paradigm in thermoelectric materials discovery is emerging.



中文翻译:

计算指导的热电材料发现

热电材料发展的潜力巨大,因此固态制冷和发电的潜力也很大。迄今为止的进展受到化学空间的广度和多样性以及实验工作的连续性的限制。在这篇评论中,我们讨论了最新的计算进展如何使我们预测电子和声子传输和散射以及材料掺杂性的能力发生革命性变化,并且我们研究了在大型化学空间中计算关键传输性质的有效方法。当结合实验反馈时,这些高通量方法可以刺激新型热电材料的发现。在较小的材料子集中,计算可以指导最佳的化学和结构剪裁,以增强材料性能并提供对潜在运输物理的洞察力。除了完美的材料之外,计算还可以用于结构和化学修饰(例如缺陷,界面,掺杂剂和合金)的合理设计,以提供对传输特性的附加控制,以优化性能。通过对材料搜索和设计的计算预测,热电材料发现的新范例正在兴起。

更新日期:2017-08-22
down
wechat
bug