当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-line monitoring of Li-ion battery electrode porosity and areal loading using active thermal scanning - modeling and initial experiment
Journal of Power Sources ( IF 8.1 ) Pub Date : 2017-08-18 , DOI: 10.1016/j.jpowsour.2017.07.084
Przemyslaw Rupnowski , Michael Ulsh , Bhushan Sopori , Brian G. Green , David L. Wood , Jianlin Li , Yangping Sheng

This work focuses on a new technique called active thermal scanning for in-line monitoring of porosity and areal loading of Li-ion battery electrodes. In this technique a moving battery electrode is subjected to thermal excitation and the induced temperature rise is monitored using an infra-red camera. Static and dynamic experiments with speeds up to 1.5 m min−1 are performed on both cathodes and anodes and a combined micro- and macro-scale finite element thermal model of the system is developed. It is shown experimentally and through simulations that during thermal scanning the temperature profile generated in an electrode depends on both coating porosity (or area loading) and thickness. It is concluded that by inverting this relation the porosity (or areal loading) can be determined, if thermal response and thickness are simultaneously measured.



中文翻译:

使用主动热扫描在线监测锂离子电池电极的孔隙率和面负载-建模和初步实验

这项工作的重点是一种称为主动热扫描的新技术,用于在线监测锂离子电池电极的孔隙率和面负载。在这种技术中,移动的电池电极受到热激励,并使用红外热像仪监控感应的温度升高。静态和动态实验,速度高达1.5 m min -1在阴极和阳极上均进行了实验,并开发了系统的微观和宏观有限元组合热模型。通过实验和仿真显示,在热扫描过程中,电极中产生的温度曲线取决于涂层的孔隙率(或面积负荷)和厚度。结论是,如果同时测量热响应和厚度,则通过反转该关系可以确定孔隙率(或面载荷)。

更新日期:2017-08-18
down
wechat
bug