当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes
ACS Energy Letters ( IF 19.3 ) Pub Date : 2017-08-14 00:00:00 , DOI: 10.1021/acsenergylett.7b00466
Kara D. Fong 1 , Tiesheng Wang 1 , Hyun-Kyung Kim 1 , R. Vasant Kumar 1 , Stoyan K. Smoukov 1, 2, 3
Affiliation  

Conducting polymers show great promise as supercapacitor materials due to their high theoretical specific capacitance, low cost, toughness, and flexibility. Poor ion mobility, however, can render active material more than a few tens of nanometers from the surface inaccessible for charge storage, limiting performance. Here, we use semi-interpenetrating networks (sIPNs) of a pseudocapacitive polymer in an ionically conductive polymer matrix to decrease ion diffusion length scales and make virtually all of the active material accessible for charge storage. Our freestanding poly(3,4-ethylenedioxythiophene)/poly(ethylene oxide) (PEDOT/PEO) sIPN films yield simultaneous improvements in three crucial elements of supercapacitor performance: specific capacitance (182 F/g, a 70% increase over that of neat PEDOT), cycling stability (97.5% capacitance retention after 3000 cycles), and flexibility (the electrodes bend to a <200 μm radius of curvature without breaking). Our simple and controllable sIPN fabrication process presents a framework to develop a range of polymer-based interpenetrated materials for high-performance energy storage technologies.

中文翻译:

用于增强型超级电容器电极的半互穿聚合物网络

导电聚合物由于其高的理论比电容,低成本,韧性和柔韧性而显示出作为超级电容器材料的广阔前景。但是,较差的离子迁移率会使活性材料离表面不超过几十纳米,无法进行电荷存储,从而限制了性能。在这里,我们在离子导电聚合物基质中使用拟电容聚合物的半互穿网络(sIPN),以减少离子扩散长度尺度,并使几乎所有活性物质均可用于电荷存储。我们的独立式聚(3,4-乙撑二氧噻吩)/聚环氧乙烷(PEDOT / PEO)sIPN膜可同时改善超级电容器性能的三个关键要素:比电容(182 F / g,比纯净电容增加70% PEDOT),循环稳定性(97。3000次循环后的5%电容保持率)和柔韧性(电极弯曲到<200μm的曲率半径而不会断裂)。我们简单而可控的sIPN制造工艺为开发用于高性能能量存储技术的一系列基于聚合物的互穿材料提供了框架。
更新日期:2017-08-14
down
wechat
bug