当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self‐Tuning n‐Type Bi2(Te,Se)3/SiC Thermoelectric Nanocomposites to Realize High Performances up to 300 °C
Advanced Science ( IF 15.1 ) Pub Date : 2017-08-11 , DOI: 10.1002/advs.201700259
Yu Pan 1, 2 , Umut Aydemir 2 , Fu-Hua Sun 1 , Chao-Feng Wu 1 , Thomas C. Chasapis 2 , G. Jeffrey Snyder 2 , Jing-Feng Li 1
Affiliation  

Bi2Te3 thermoelectric materials are utilized for refrigeration for decades, while their application of energy harvesting requires stable thermoelectric and mechanical performances at elevated temperatures. This work reveals that a steady zT of ≈0.85 at 200 to 300 °C can be achieved by doping small amounts of copper iodide (CuI) in Bi2Te2.2Se0.8–silicon carbide (SiC) composites, where SiC nanodispersion enhances the flexural strength. It is found that CuI plays two important roles with atomic Cu/I dopants and CuI precipitates. The Cu/I dopants show a self‐tuning behavior due to increasing solubility with increasing temperatures. The increased doping concentration increases electrical conductivity at high temperatures and effectively suppresses the intrinsic excitation. In addition, a large reduction of lattice thermal conductivity is achieved due to the “in situ” CuI nanoprecipitates acting as phonon‐scattering centers. Over 60% reduction of bipolar thermal conductivity is achieved, raising the maximum useful temperature of Bi2Te3 for substantially higher efficiency. For module applications, the reported materials are suitable for segmentation with a conventional ingot. This leads to high device ZT values of ≈0.9–1.0 and high efficiency up to 9.2% from 300 to 573 K, which can be of great significance for power generation from waste heat.

中文翻译:

自调谐n型Bi2(Te,Se)3 / SiC热电纳米复合材料可实现高达300°C的高性能

Bi 2 Te 3热电材料用于制冷已有数十年的历史,而其能量收集的应用要求在高温下具有稳定的热电和机械性能。这项工作表明,通过在Bi 2 Te 2.2 Se 0.8中掺杂少量的碘化铜(CuI),可以在200至300°C的温度下实现稳定的zT≈0.85–碳化硅(SiC)复合材料,其中SiC纳米分散增强了弯曲强度。发现CuI与原子Cu / I掺杂剂和CuI沉淀物起着两个重要的作用。由于温度升高,溶解度增加,Cu / I掺杂剂表现出自调谐行为。增加的掺杂浓度增加了高温下的电导率,并有效地抑制了固有的激发。此外,由于“原位” CuI纳米沉淀物起声子散射中心的作用,大大降低了晶格热导率。双极导热率降低了60%以上,从而提高了Bi 2 Te 3的最高使用温度以获得更高的效率。对于模块应用,所报道的材料适用于用常规铸锭进行分段。这导致设备的ZT值高至约0.9-1.0,并且在300至573 K范围内的效率高达9.2%,这对于利用余热发电非常重要。
更新日期:2017-08-11
down
wechat
bug