当前位置: X-MOL 学术Prog. Energy Combust. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metal-based nanoenergetic materials: Synthesis, properties, and applications
Progress in Energy and Combustion Science ( IF 32.0 ) Pub Date : 2017-07-01 , DOI: 10.1016/j.pecs.2017.02.002
Dilip Sundaram , Vigor Yang , Richard A. Yetter

Abstract Metal particles are attractive candidate fuels for various propulsion and energy-conversion applications, primarily due to their high energy densities. Micron-sized particles present several drawbacks, such as high ignition temperatures and particle agglomeration, resulting in low energy-release rates. Nanoparticles, on the other hand, are quite attractive due to their unique and favorable properties, which are attributed to their high specific surface area and excess energy of surface atoms. As a result, there is a growing interest in employing metal nanoparticles in propulsion and energy-conversion systems. The present work provides a comprehensive review of the advances made over the past few decades in the areas of synthesis, properties, and applications of metal-based energetic nanomaterials. An overview of existing methods to synthesize nanomaterials is first provided. Novel approaches to passivate metal nanoparticles are also discussed. The physicochemical properties of metal nanoparticles are then examined in detail. Low-temperature oxidation processes, and ignition and combustion of metal nanoparticles are investigated. The burning behaviors of different energetic material formulations with metal nanoparticles such as particle-laden dust clouds, solid propellants, liquid fuels and propellants, thermite materials, and inter-metallic systems are reviewed. Finally, deficiencies and uncertainties in our understanding of the field are identified, and directions for future work are suggested.

中文翻译:

金属基纳米高能材料:合成、性能和应用

摘要金属颗粒是各种推进和能量转换应用的有吸引力的候选燃料,主要是由于它们的高能量密度。微米级颗粒存在几个缺点,例如高点火温度和颗粒团聚,导致能量释放率低。另一方面,纳米粒子由于其独特和有利的特性而非常有吸引力,这归因于它们的高比表面积和表面原子的过剩能量。因此,人们对在推进和能量转换系统中使用金属纳米粒子越来越感兴趣。目前的工作全面回顾了过去几十年在金属基高能纳米材料的合成、性质和应用领域取得的进展。首先概述了合成纳米材料的现有方法。还讨论了钝化金属纳米粒子的新方法。然后详细检查金属纳米粒子的物理化学性质。研究了低温氧化过程以及金属纳米粒子的点火和燃烧。综述了含有金属纳米粒子的不同含能材料配方的燃烧行为,例如载有颗粒的尘埃云、固体推进剂、液体燃料和推进剂、铝热剂材料和金属间系统。最后,确定了我们对该领域理解的不足和不确定性,并提出了未来工作的方向。然后详细检查金属纳米粒子的物理化学性质。研究了低温氧化过程以及金属纳米粒子的点火和燃烧。综述了含有金属纳米粒子的不同含能材料配方的燃烧行为,例如载有颗粒的尘埃云、固体推进剂、液体燃料和推进剂、铝热剂材料和金属间系统。最后,确定了我们对该领域理解的不足和不确定性,并提出了未来工作的方向。然后详细检查金属纳米粒子的物理化学性质。研究了低温氧化过程以及金属纳米粒子的点火和燃烧。综述了含有金属纳米粒子的不同含能材料配方的燃烧行为,例如载有颗粒的尘埃云、固体推进剂、液体燃料和推进剂、铝热剂材料和金属间系统。最后,确定了我们对该领域理解的不足和不确定性,并提出了未来工作的方向。审查了液体燃料和推进剂、铝热剂材料和金属间系统。最后,确定了我们对该领域理解的不足和不确定性,并提出了未来工作的方向。审查了液体燃料和推进剂、铝热剂材料和金属间系统。最后,确定了我们对该领域理解的不足和不确定性,并提出了未来工作的方向。
更新日期:2017-07-01
down
wechat
bug