当前位置: X-MOL 学术Prog. Energy Combust. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas
Progress in Energy and Combustion Science ( IF 29.5 ) Pub Date : 2017-01-01 , DOI: 10.1016/j.pecs.2016.09.001
Foteini M. Sapountzi , Jose M. Gracia , C.J. (Kees-Jan) Weststrate , Hans O.A. Fredriksson , J.W. (Hans) Niemantsverdriet

Water electrolysis is the most promising method for efficient production of high purity hydrogen (and oxygen), while the required power input for the electrolysis process can be provided by renewable sources (e.g. solar or wind). The thus produced hydrogen can be used either directly as a fuel or as a reducing agent in chemical processes, such as in Fischer–Tropsch synthesis. Water splitting can be realized both at low temperatures (typically below 100 °C) and at high temperatures (steam water electrolysis at 500–1000 °C), while different ionic agents can be electrochemically transferred during the electrolysis process (OH−, H+, O2−). Singular requirements apply in each of the electrolysis technologies (alkaline, polymer electrolyte membrane and solid oxide electrolysis) for ensuring high electrocatalytic activity and long-term stability. The aim of the present article is to provide a brief overview on the effect of the nature and structure of the catalyst–electrode materials on the electrolyzer's performance. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The current trends, limitations and perspectives for future developments are summarized for the diverse electrolysis technologies of water splitting, while the case of CO2/H2O co-electrolysis (for synthesis gas production) is also discussed.

中文翻译:

用于产生氢气、氧气和合成气的电催化剂

水电解是高效生产高纯度氢气(和氧气)的最有前途的方法,而电解过程所需的电力输入可以由可再生能源(例如太阳能或风能)提供。由此产生的氢气可以直接用作燃料或用作化学过程中的还原剂,例如在费-托合成中。水分解可以在低温(通常低于 100°C)和高温(500-1000°C 的蒸汽水电解)下实现,而不同的离子试剂可以在电解过程中进行电化学转移(OH-、H+、 O2-)。每种电解技术(碱性、聚合物电解质膜和固体氧化物电解)都有独特的要求,以确保高电催化活性和长期稳定性。本文的目的是简要概述催化剂-电极材料的性质和结构对电解槽性能的影响。介绍了适用于大规模水电解的高效阳极和阴极材料的过去发现和最新进展。总结了水分解的各种电解技术的当前趋势、局限性和未来发展的前景,同时还讨论了 CO2/H2O 共电解(用于合成气生产)的案例。介绍了适用于大规模水电解的高效阳极和阴极材料的过去发现和最新进展。总结了水分解的各种电解技术的当前趋势、局限性和未来发展的前景,同时还讨论了 CO2/H2O 共电解(用于合成气生产)的案例。介绍了适用于大规模水电解的高效阳极和阴极材料的过去发现和最新进展。总结了水分解的各种电解技术的当前趋势、局限性和未来发展的前景,同时还讨论了 CO2/H2O 共电解(用于合成气生产)的案例。
更新日期:2017-01-01
down
wechat
bug