当前位置: X-MOL 学术ACS Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Engineered Optogenetic Switch for Spatiotemporal Control of Gene Expression, Cell Differentiation, and Tissue Morphogenesis
ACS Synthetic Biology ( IF 4.7 ) Pub Date : 2017-09-06 00:00:00 , DOI: 10.1021/acssynbio.7b00147
Lauren R. Polstein 1 , Mark Juhas 1 , Gabi Hanna 2 , Nenad Bursac 1 , Charles A. Gersbach 1, 3, 4
Affiliation  

The precise spatial and temporal control of gene expression, cell differentiation, and tissue morphogenesis has widespread application in regenerative medicine and the study of tissue development. In this work, we applied optogenetics to control cell differentiation and new tissue formation. Specifically, we engineered an optogenetic “on” switch that provides permanent transgene expression following a transient dose of blue light illumination. To demonstrate its utility in controlling cell differentiation and reprogramming, we incorporated an engineered form of the master myogenic factor MyoD into this system in multipotent cells. Illumination of cells with blue light activated myogenic differentiation, including upregulation of myogenic markers and fusion into multinucleated myotubes. Cell differentiation was spatially patterned by illumination of cell cultures through a photomask. To demonstrate the application of the system to controlling in vivo tissue development, the light inducible switch was used to control the expression of VEGF and angiopoietin-1, which induced angiogenic sprouting in a mouse dorsal window chamber model. Live intravital microscopy showed illumination-dependent increases in blood-perfused microvasculature. This optogenetic switch is broadly useful for applications in which sustained and patterned gene expression is desired following transient induction, including tissue engineering, gene therapy, synthetic biology, and fundamental studies of morphogenesis.

中文翻译:

一种工程化的光遗传学开关,用于时空控制基因表达,细胞分化和组织形态发生

基因表达,细胞分化和组织形态发生的精确时空控制已广泛应用于再生医学和组织发育研究中。在这项工作中,我们应用光遗传学来控制细胞分化和新组织的形成。具体来说,我们设计了一种光遗传学的“ on”开关,该开关在短暂剂量的蓝光照射后提供永久的转基因表达。为了证明其在控制细胞分化和重编程中的效用,我们将工程化形式的主成肌因子MyoD整合到了多能细胞的该系统中。蓝光照射的细胞激活了肌原性分化,包括肌原性标志物的上调和融合到多核肌管中。通过光掩模照射细胞培养物在空间上对细胞分化进行图案化。演示系统在控制中的应用在体内组织发育中,使用光诱导开关来控制VEGF和Angiopoietin-1的表达,从而诱导小鼠背窗室模型中的血管新生。活体活体显微镜检查显示血液灌注的微脉管系统的照明依赖性增加。这种光遗传学开关广泛适用于瞬时诱导后需要持续和模式化的基因表达的应用,包括组织工程,基因治疗,合成生物学和形态发生的基础研究。
更新日期:2017-09-06
down
wechat
bug