当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material
Science ( IF 56.9 ) Pub Date : 2017-07-21 00:00:00 , DOI: 10.1126/science.aai8142
F. Reis 1 , G. Li 2, 3 , L. Dudy 1 , M. Bauernfeind 1 , S. Glass 1 , W. Hanke 3 , R. Thomale 3 , J. Schäfer 1 , R. Claessen 1
Affiliation  

Quantum spin Hall materials hold the promise of revolutionary devices with dissipationless spin currents but have required cryogenic temperatures owing to small energy gaps. Here we show theoretically that a room-temperature regime with a large energy gap may be achievable within a paradigm that exploits the atomic spin-orbit coupling. The concept is based on a substrate-supported monolayer of a high–atomic number element and is experimentally realized as a bismuth honeycomb lattice on top of the insulating silicon carbide substrate SiC(0001). Using scanning tunneling spectroscopy, we detect a gap of ~0.8 electron volt and conductive edge states consistent with theory. Our combined theoretical and experimental results demonstrate a concept for a quantum spin Hall wide-gap scenario, where the chemical potential resides in the global system gap, ensuring robust edge conductance.



中文翻译:

SiC衬底上的铋:高温量子自旋霍尔材料的候选材料

量子自旋霍尔材料有望实现具有无耗散自旋电流的革命性器件,但由于能隙较小,因此需要低温。在这里,我们从理论上证明,在利用原子自旋轨道耦合的范式内,可以实现具有大能隙的室温状态。该概念基于高原子序数的衬底支撑单分子层,并通过实验实现为绝缘碳化硅衬底SiC(0001)顶部的铋蜂窝状晶格。使用扫描隧道光谱法,我们检测到〜0.8电子伏特的间隙和符合理论的导电边缘态。我们的理论和实验结果相结合,证明了量子自旋霍尔宽能隙情形的概念,其中化学势位于整体系统间隙中,

更新日期:2017-07-21
down
wechat
bug