当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tailored semiconductors for high-harmonic optoelectronics
Science ( IF 44.7 ) Pub Date : 2017-07-20 , DOI: 10.1126/science.aan2395
Murat Sivis 1, 2 , Marco Taucer 1 , Giulio Vampa 1 , Kyle Johnston 1 , André Staudte 1 , Andrei Yu. Naumov 1 , D. M. Villeneuve 1 , Claus Ropers 2 , P. B. Corkum 1
Affiliation  

Hitting the highs in solid state The ability to generate high harmonics of optical frequencies through the nonlinear interaction between intense light pulses and gas atoms has opened up the area of ultrafast optics and spectroscopy. Sivis et al. now show that high harmonics can also be generated with a solid-state sample. They used nanofabricated structured targets of ZnO and varied the chemical composition of the sample to demonstrate that (modest) high harmonics can be generated as the light interacts with the target materials. The results present the possibility of developing solid-state ultrafast optical devices. Science, this issue p. 303 Nanofabricated structures and chemical composition can tune the generation of high harmonics from solid-state targets. The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology. This enables the control of high-harmonic technology within precisely engineered solid targets. We demonstrate customized high-harmonic wave fields with wavelengths down to 225 nanometers (ninth-harmonic order of 2-micrometer laser pulses) and present an integrated Fresnel zone plate target in silicon, which leads to diffraction-limited self-focusing of the generated harmonics down to 1-micrometer spot sizes.

中文翻译:

用于高谐波光电子学的定制半导体

在固态中达到最高点 通过强光脉冲和气体原子之间的非线性相互作用产生光频高次谐波的能力开辟了超快光学和光谱学领域。西维斯等人。现在表明,固态样品也可以产生高次谐波。他们使用纳米结构的 ZnO 目标并改变样品的化学成分,以证明当光与目标材料相互作用时可以产生(适度的)高次谐波。结果显示了开发固态超快光学器件的可能性。科学,这个问题 p。303 纳米结构和化学成分可以调节固态目标产生的高次谐波。30 年前气体中高次谐波产生的出现为阿秒科学奠定了基础,并促进了原子、分子和固体的超快光谱学。我们通过纳米结构和离子注入半导体探索固态高次谐波的产生。我们使用波长选择性显微成像来绘制增强的谐波发射,并表明可以通过修改化学成分和形态在固体中局部调整生成介质和驱动场。这使得能够在精确设计的固体目标内控制高谐波技术。我们展示了波长低至 225 纳米(2 微米激光脉冲的九次谐波)的定制高谐波场,并在硅中展示了集成的菲涅耳波带板目标,
更新日期:2017-07-20
down
wechat
bug