当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
All-oxide–based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal
Science ( IF 44.7 ) Pub Date : 2017-07-13 , DOI: 10.1126/science.aak9717
Binbin Chen 1, 2 , Haoran Xu 1 , Chao Ma 1 , Stefan Mattauch 3 , Da Lan 1 , Feng Jin 1, 2 , Zhuang Guo 1 , Siyuan Wan 1 , Pingfan Chen 1 , Guanyin Gao 1 , Feng Chen 2 , Yixi Su 3 , Wenbin Wu 1, 2, 4
Affiliation  

Making an oxide-layered antiferromagnet Antiferromagnetism, a state of matter where ordered neighboring spins point in opposite directions, can be engineered in layered heterostructures, which affords control over their properties. Doing so in oxide heterostructures is tricky because the necessary ferromagnetism of the constituent layers may not survive thinning to nanometer thicknesses. Chen et al. overcame this materials challenge by finding and growing the right combination of substrate, magnetic, and insulating layers to engineer antiferromagnetic coupling. The resulting superlattices, consisting of alternating layers of a ferromagnetic oxide and an insulating material, exhibit layer-by-layer switching of magnetization. Science, this issue p. 191 Superlattices made of layers of ferromagnetic La2/3Ca1/3MnO3 and insulating CaRu1/2Ti1/2O3 show antiferromagnetic coupling. Synthesizing antiferromagnets with correlated oxides has been challenging, owing partly to the markedly degraded ferromagnetism of the magnetic layer at nanoscale thicknesses. Here we report on the engineering of an antiferromagnetic interlayer exchange coupling (AF-IEC) between ultrathin but ferromagnetic La2/3Ca1/3MnO3 layers across an insulating CaRu1/2Ti1/2O3 spacer. The layer-resolved magnetic switching leads to sharp steplike hysteresis loops with magnetization plateaus depending on the repetition number of the stacking bilayers. The magnetization configurations can be switched at moderate fields of hundreds of oersted. Moreover, the AF-IEC can also be realized with an alternative magnetic layer of La2/3Sr1/3MnO3 that possesses a Curie temperature near room temperature. The findings will add functionalities to devices with correlated-oxide interfaces.

中文翻译:

具有层分辨磁化反转的全氧化物合成反铁磁体

制造氧化物层状反铁磁体 反铁磁性是一种有序的相邻自旋指向相反方向的物质状态,可以在层状异质结构中进行设计,从而可以控制其特性。在氧化物异质结构中这样做很棘手,因为组成层所需的铁磁性可能无法在减薄到纳米厚度后继续存在。陈等人。通过寻找和生长基板、磁性和绝缘层的正确组合来设计反铁磁耦合,克服了这一材料挑战。由此产生的超晶格由铁磁氧化物和绝缘材料的交替层组成,表现出逐层的磁化转换。科学,这个问题 p。191 由铁磁 La2/3Ca1/3MnO3 和绝缘 CaRu1/2Ti1/2O3 层制成的超晶格表现出反铁磁耦合。合成具有相关氧化物的反铁磁体一直具有挑战性,部分原因是纳米级厚度的磁性层的铁磁性显着降低。在这里,我们报告了跨绝缘 CaRu1/2Ti1/2O3 隔离物的超薄铁磁 La2/3Ca1/3MnO3 层之间的反铁磁层间交换耦合 (AF-IEC) 的工程。层分辨磁切换导致尖锐的阶梯状磁滞回线,磁化平台取决于堆叠双层的重复次数。磁化配置可以在数百奥斯特的中等磁场下切换。而且,AF-IEC 也可以通过具有接近室温的居里温度的 La2/3Sr1/3MnO3 替代磁性层来实现。这些发现将为具有相关氧化物界面的设备添加功能。
更新日期:2017-07-13
down
wechat
bug