当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct Imaging of Frenkel Exciton Transport by Ultrafast Microscopy
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2017-07-05 00:00:00 , DOI: 10.1021/acs.accounts.7b00155
Tong Zhu 1 , Yan Wan 1 , Libai Huang 1
Affiliation  

Long-range transport of Frenkel excitons is crucial for achieving efficient molecular-based solar energy harvesting. Understanding of exciton transport mechanisms is important for designing materials for solar energy applications. One major bottleneck in unraveling of exciton transport mechanisms is the lack of direct measurements to provide information in both spatial and temporal domains, imposed by the combination of fast energy transfer (typically ≤1 ps) and short exciton diffusion lengths (typically ≤100 nm). This challenge requires developing experimental tools to directly characterize excitation energy transport, and thus facilitate the elucidation of mechanisms. To address this challenge, we have employed ultrafast transient absorption microscopy (TAM) as a means to directly image exciton transport with ∼200 fs time resolution and ∼50 nm spatial precision. By mapping population in spatial and temporal domains, such approach has unraveled otherwise obscured information and provided important parameters for testing exciton transport models.

中文翻译:

Frenkel激子输运的直接成像通过超快速显微镜。

弗伦克尔激子的长距离运输对于实现高效的基于分子的太阳能收集至关重要。激子传输机制的理解对于设计用于太阳能应用的材料很重要。激子输运机理研究的一个主要瓶颈是缺乏直接测量来提供时域和时域信息,这是由于快速的能量传递(通常≤1ps)和短的激子扩散长度(通常≤100nm)共同造成的。 。这一挑战需要开发实验工具来直接表征激发能的传输,从而促进机理的阐明。为了应对这一挑战,我们采用超快速瞬态吸收显微镜(TAM)作为直接成像激子输运的方法,时间分辨率约为200 fs,空间精度约为50 nm。通过在时空域中绘制人口图,这种方法可以揭示原本就模糊不清的信息,并为测试激子传输模型提供了重要的参数。
更新日期:2017-07-05
down
wechat
bug